
Article
The non-specific matrix th
alamus facilitates the
cortical information processing modes relevant for
conscious awareness
Graphical abstract
Highlights
d Corticothalamic system imbued with matrix thalamus

captures key features of consciousness

d Matrix stimulation recovers consciousness under propofol

recapitulating macaque observation

d Matrix nuclei modulate cortical attractors facilitating modes

of high information transfer
M€uller et al., 2023, Cell Reports 42, 112844
August 29, 2023 ª 2023 The Authors.
https://doi.org/10.1016/j.celrep.2023.112844
Authors

Eli J. M€uller, Brandon R. Munn,

Michelle J. Redinbaugh, Joseph Lizier,

Michael Breakspear, Yuri B. Saalmann,

James M. Shine

Correspondence
eli.muller@sydney.edu.au

In brief

Muller et al. develop a large-scale

biophysical corticothalamic model

imbued with diffusely projecting matrix

thalamic nuclei and show that stimulation

of these cells facilitates recovery of

consciousness following propofol

anesthesia—recapitulating empirical

observations in macaque monkeys. The

authors further show how the matrix

thalamus augments cortical attractors

and promotes modes of high information

transfer.
ll

mailto:eli.muller@sydney.edu.au
https://doi.org/10.1016/j.celrep.2023.112844
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2023.112844&domain=pdf


Article

The non-specific matrix thalamus facilitates
the cortical information processing modes
relevant for conscious awareness
Eli J. M€uller,1,2,5,7,* Brandon R. Munn,1,2 Michelle J. Redinbaugh,3 Joseph Lizier,2,5 Michael Breakspear,6

Yuri B. Saalmann,3,4 and James M. Shine1,2
1Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
2Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
3Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
4Wisconsin National Primate Research Centre, Madison, WI, USA
5School of Computer Science, The University of Sydney, Sydney, NSW, Australia
6The University of Newcastle, Newcastle, NSW, Australia
7Lead contact
*Correspondence: eli.muller@sydney.edu.au

https://doi.org/10.1016/j.celrep.2023.112844

SUMMARY

The neurobiological mechanisms of arousal and anesthesia remain poorly understood. Recent evidence
highlights the key role of interactions between the cerebral cortex and the diffusely projectingmatrix thalamic
nuclei. Here, we interrogate these processes in a whole-brain corticothalamic neural mass model endowed
with targeted and diffusely projecting thalamocortical nuclei inferred from empirical data. This model cap-
tures key features seen in propofol anesthesia, including diminished network integration, lowered state diver-
sity, impaired susceptibility to perturbation, and decreased corticocortical coherence. Collectively, these
signatures reflect a suppression of information transfer across the cerebral cortex. We recover these signa-
tures of conscious arousal by selectively stimulating the matrix thalamus, recapitulating empirical results in
macaque, as well as wake-like information processing states that reflect the thalamic modulation of large-
scale cortical attractor dynamics. Our results highlight the role of matrix thalamocortical projections in
shaping many features of complex cortical dynamics to facilitate the unique communication states support-
ing conscious awareness.

INTRODUCTION

Consciousness is defined as the capacity to be aware of and

responsive to one’s external environment and internal states.1

Despite a pervasive interest that extends beyond the scientific

community, our understanding of the biological mechanisms

that support conscious awareness remains incomplete. Many

different properties of whole-brain neuroimaging data have

been linked to alterations in the level of consciousness,2–5 typi-

cally as a function of anesthetic manipulation.2 Despite these ad-

vances, we lack a systems-level description of how conscious-

ness emerges from neurobiology.

There hasbeena long-standing appreciation that interactionsof

the thalamocortical system are crucial for conscious aware-

ness.6–12 Recent evidence has reinforced this hypothesis while

incorporating additional biological complexity. For instance, the

administration of several classes of anesthetic agents blocks the

intracompartment coupling of thick-tufted layer 5 (L5) cortical py-

ramidal neurons, which in turn are under the influence of diffusely

projecting13,14 matrix thalamic nuclei.15 Experimental work in

macaques has demonstrated that propofol anesthesia induces a

reduction of coordinated activity between the thalamus and

deep cortical layers (including those that house the cell bodies of

L5 pyramidal neurons) across multiple cortical areas.16 Further-

more, electrically stimulating the central thalamus restores the

coherent activity that is diminished during anesthetic-induced

loss of consciousness and facilitates recovery of conscious-

ness.16–18 Another thalamic stimulation study in anesthetized ma-

caque showed that recovery of consciousness was concomitant

with a broad evoked response spanning many cortical areas and

an increase incorticocortical connectivity.17These results suggest

a crucial role of the interactions between the diffusely projecting

matrix thalamus and L5 pyramidal neurons for conscious-

ness.8,9,19,20However, challenges inherent in recordingsufficiently

large numbers of neurons across a broad range of behavioral

states limit the capacity to determine the precise systems-level

importance of these interactions.

Computational modeling allows simulation of large-scale neu-

ral systems and hence offers a unique approach to this prob-

lem.21–23 Here, we augment a well-validated neural mass model

of the corticothalamic system24 with neurobiological details spe-

cific to the present question: namely, both targeted and diffuse
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thalamocortical populations,13,14 empirically derived thalamo-

cortical coupling gradients,25 and a neurobiological implementa-

tion of propofol-mediated anesthesia.26 We interrogate this cor-

ticothalamic model’s role in generating key features of the

anesthetic state and the mechanisms recovering systems-level

signatures of arousal following selective stimulation of the matrix

thalamus. From there, we exploit the glass-box nature of our

model to quantify thalamic contributions to shaping cortical dy-

namics and systems-level modes of information processing.

Together, this approach provides a working model of whole-

brain dynamics across arousal states.

RESULTS

Whole-brain model of corticothalamic interactions
We simulated a network of 400 corticothalamic neural masses

(from a widely employed parcellation scheme27) using the neural

field simulation software nftSim.28 A neural mass model is a

mathematical description of a population of neurons that incor-

porates their biophysical properties, but rather than tracking sin-

gle-neuron activity, it approximates neuronal firing rates using

parametric probability distributions, which change over time.

This approach rests on a key assumption—the diffusion approx-

imation—which states that for a large population of neurons with

sufficiently weak correlations between neurons, the dynamics of

the first two moments (i.e., the mean and variance) are sufficient

to describe population-level behavior.22,29–32 Furthermore, the

variance can be assumed to be static, which means that the

mean dynamics of the firing rate distribution (which aggregates

synaptic inputs and all stochastic effects) can be systematically

analyzed. Interactions between each population’s mean firing

rate can further be parameterized to capture timescales of

response and propagation, as well as average between-popula-

tion couplings. The parameters for each corticothalamic neural

mass used in the present model are set to ‘‘eyes-closed’’ esti-

mates based on Bayesian fits to a power spectrum of human

electrophysiological recordings33 (see Table 1). This yields activ-

ity with a characteristic 1/f spectrum and a peak in the alpha fre-

quency band (8–13 Hz). These oscillatory rhythms capture spike

rate modulations of neurons across a population that relate to

extracellular field potentials measured via electroencephalo-

gram (EEG) and local field potential (LFP) recordings.34

In line with empirical observation,35–38 corticocortical connec-

tivity was modeled as a combination of exponential spatial

drop-off (i.e., connection density decreasing exponentially with

interareal geodesic distance), with symmetric coupling of homol-

ogous areas between hemispheres, and connectivity strength

estimated from empirical measures of white-matter fiber den-

sity.39 To mimic the known excitatory interactions between the

matrix thalamus and L5 pyramidal neurons,40 we leveraged pre-

vious work that identified core (specific) and matrix (non-spe-

cific) thalamocortical nuclei through genetic expression and

investigated their temporal coordination with regions spread

across the cerebral cortex.25

We first optimized the global scaling of corticocortical connec-

tivity to generate correlations between cortical areas that are

consistent with empirical observations41,42 (Figure 1F). Left un-

checked, these excitatory interactions manifest runaway activ-

ity; however, this does not typically occur in practice due to a

key feature of the cerebral cortex—tight excitatory-inhibitory

(E-I) balance.43 In line with previous work,41,44 we impose an

E-I balance by upscaling local inhibition to ensure a 3 Hz

steady-state firing rate attractor for the cortical populations,

consistent with in vivo recordings.45 Since the matrix thalamus

is exclusively excitatory, activity in the matrix thalamus acts to

break E-I cortical balance and hence weaken the stability of

cortical attractors imposed by this E-I balance, resulting in a het-

erogeneous spread of cortical firing rates.

We optimized global structural connectivity scaling by

comparing the correlation matrix of model outputs with func-

tional connectivity calculated on empirical 7T resting-state

fMRI data (r = 0:44;p< 10� 16; Figure 1F).42,46 Having imposed

a baseline wake state for the model, we next interrogated the

systems-level features of propofol anesthesia.16

Modeling propofol anesthesia
Although the precise mechanisms are not well understood, the

majority of anesthetic agents up-regulate the activity of inhibitory

gamma-aminobutyric acid (GABAA) receptors,
47 causing a pro-

longation of the inhibitory post-synaptic response potentials

(IPSPs), an integral parameter in our neural fieldmodel.21 To cap-

ture this up-regulation under propofol anesthesia, we followed

recent work26 and introduced a parameter, r (Figure 1G), which

scales all IPSPs in the model while maintaining a fixed peak

response (see STAR Methods). This is consistent with recent

work showing that explicit anesthetic effects on thalamocortical

projections include decoupling of evoked-response potentials

in apical dendrites from somatic dynamics in L5 cortical

pyramidal neurons.15 To prevent a potential corticocentric

Table 1. Corticothalamic neural mass parameters

Parameter Description Value Unit

ge cortical damping rate 116 s�1

Qmax maximum firing rate 340 s�1

q firing threshold 12.9 mV

s0 threshold spread 3.8 mV

4n input noise amplitude

spectral density

13 10�5 s�1

a decay rate of cell-body

potential

83 s�1

b rise rate of cell-body

potential

769 s�1

nee intranode coupling

strengths

1.5 mV s

nei �3 mV s

nesc 0.57 mV s

nse 3.4 mV s

nscr �1.5 mV s

nscn 3.6 mV s

nre 0.17 mV s

nrsc 0.05 mV s

tesc ;esm +

tsce;sme

corticothalamic loop delay 85 ms

Adapted from Abeysuriya et al.33
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bias, the up-regulation of GABAA receptors includes a targeting

of the reticular nucleus of the thalamus, prolonging inhibitory

post-synaptic potentials (Figure 1G), which in turn modulates

its inhibition of both the core and matrix subpopulations. Thus,

under IPSP prolongation, thalamocortical projections are weak-

ened, in line with empirical observations.47

To testwhether themodel recapitulates systems-level empirical

signatures of the anesthetized brain, we calculated a series of

measureson the cortical (‘‘e’’ in the nftSimmodel) population firing

rates andBOLD-transformedactivity. LFPs recorded from thema-

caque lateral intraparietal (LIP) cortex and frontal-eye fields (FEFs)

show a decrease in coherent alpha-band activity under propofol

anesthesia.16 A comparison of homologous cortical regions in

our model following a sweep of the anesthetic scaling, r, revealed

a similar decline in alpha-band coherence between the FEF

and LIP areas for r = 1:12 (Figures 2B and S3). In addition, func-

tional connectivity changes following propofol include increased

network dimensionality, ðDexp var 1 = �19% ± 0:1%Þ, but also
a reduction in network integration (mean participation coeff-

icient: DPC = �4± 0:13 10� 3). Timeseries show a reduction in

susceptibility (sensitivity to perturbation48: Dc = �18%± 1%)

and synchronization variability (Dsq = � 24% ± 1%), which cap-

tures the diversity of synchronous and asynchronous dynamics

and represents a proxy for metastable switching between

integrated and segregated modes. Of note, a measure of a sys-

tem’s memory, namely the mean autocorrelation timescale

(DtACF = �34% ± 1%), also reduces following propofol. The

fact that many of these signatures have previously been shown

A B C

D E F

G

Figure 1. Distinct thalamocortical subtypes and whole-brain modeling

(A) Schema of characteristic projection profiles of core (specific) and matrix (non-specific) thalamocortical neurons (adapted from Clascá et al.13).

(B) Corticothalamic neural mass—the cerebral cortex consists of an excitatory population (e) and an inhibitory population (i), the thalamus consists of a core

population (Sc) describing targeted thalamocortical projections, and a matrix population (Sm) describing diffuse thalamocortical projections; subcortical drive

from the brainstem (n).

(C) Network structure combines corticocortical exponential drop-off (i) and empirical white-matter estimates (ii) and thalamocortical matrix ‘‘one-to-all’’ con-

nectivity (iii).

(D) Cortical topography of thalamic subtype projections inferred from human gene expression data detailing calcium-binding proteins unique to each.25

(E) The extent of each thalamic population’s interaction with the cerebral cortex was tuned to match the observed empirical gradient.25

(F) Comparison of functional connectivity for the model and resting-state fMRI data showed a robust positive correlation (r = 0:44;p<10�16).

(G) Propofol is modeled as a GABAA up-regulation that increases net inhibition through the prolongation of the timescale of the IPSP—this allowed us to place the

model in an ‘‘anesthetized’’ regime while retaining the topological structure of the model.
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to change under anesthesia49–53 provides a robust empirical vali-

dation of our neural massmodel and thus allows us to test the hy-

pothesis that simulation of the matrix thalamus can recover fea-

tures of the awake brain (Figure 2A).

Electrophysiological recordings have shown a broad anteriori-

zation of alpha-band activity (8–13 Hz) following propofol anes-

thesia,54 and we find a similar topological pattern between

wake and propofol model outputs (Figure S5). As this is an

emergent property of the model, it suggests that the anterioriza-

tion of alpha activity emerges from the interaction between the

thalamocortical gradient of core/matrix and cortical

connectivity. In this way, our model predicts features not implic-

itly modeled.

The systems-level impact of matrix thalamic stimulation
We next characterized the impact of thalamic stimulation on cor-

ticocortical dynamics. Recent studies have shown that thalamic

projections innervate both apical and basal dendrites of the L5

pyramidal tract (PT) neurons,13,40 which, when driven together,

allow calcium ‘‘spikes’’ to propagate to the soma and cause

A B C

D E F G

H I J K

Figure 2. Propofol and corticocortical coherence

(A) Schema of targets for propofol effects and electrical stimulation of matrix thalamus. Emboldened connections show where the inhibitory post-synaptic

potentials are prolonged under propofol—as shown in Figure 1G. Stimulation is applied exclusively to the matrix population.

(B) Measures of complex adaptive dynamics across wake (green), propofol (gray), and matrix stimulation (high: red, low: purple) states of the corticothalamic

model: sFC, variance of functional connectivity; c, susceptibility; PC, participation coefficient; t, autocorrelation timescale; sq, variance of phase synchrony; KC,

Kolmogorov complexity; l8� 13Hz, alpha-band (8–13 Hz) coherence; sPC1, explained variance of first principal component.

(C) Summation of percentage difference of each dynamics measure from wake values in propofol and matrix stimulation states. Each measure is jack-knifed to

show effects on wake dissimilarity.

(D) Empirical macaque observations.

(E) Empirical coherence of monkey FEF and LIP cortical regions in wake and propofol anesthesia.

(F) Change in empirical coherence of monkey FEF and LIP under propofol anesthesia following central thalamic stimulation. Effective stimulation resulted in

induced arousal in the monkey.

(E) and (F) are adapted from Redinbaugh et al.16 and (G) is adapted from Tasserie et al.17

(G) Empirical functional connectivity of BOLD activity from a macaque monkey before and during stimulation of the central thalamus.

(H) Model human observations.

(I) Model coherence of FEF and LIP cortical activity in wake and propofol parameters.

(J) Change in coherence of FEF and LIP cortical activity for propofol vs. stimulation of high- and low-matrix regions.

(K) Functional connectivity of BOLD-transformed simulation cortical firing rates following high-matrix stimulation.
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high-frequency burst firing.55 Furthermore, independent studies

in anesthetized macaque found that central thalamic stimulation

induced arousal-like behavioral states but at different stimulation

frequencies (albeit using different types of stimulating electrodes

and targeting different nuclei within the central thalamus).16–18

Recent studies56,57 have shown that the timescales of synapto-

dendritic and somatic dynamics (which impose a low-pass filter

onto afferent signals) allow approximation of stimulus evoked re-

sponses by a constant perturbation that scales with stimulus fre-

quency and amplitude (Figures S4A–S4C). We leveraged this to

study the effects of stimulation applied to a target node of the

matrix thalamus (Figure 2A), with exponentially decreasing

amplitude as a function of geodesic distance for all other nodes.

Thalamic regions are comprised of differential blends of core and

matrix populations. To discern the effect of this on cortical dy-

namics, two separate simulations were run: the first targeted

stimulation to a node with the highest proportion of matrix-to-

core populations (‘‘high matrix’’; cH); the second targeted matrix

stimulation to a node with the lowest proportion of matrix-to-

core nuclei (‘‘low matrix’’; cL). Comparing these two thalamo-

cortical extremes gives insight into their differential effect on cor-

tico-cortical information processing.

A sweep of the stimulation amplitude and spatial decay rate

parameters recapitulates the decrease in coherent alpha-band

activity under propofol anesthesia observed empirically in ma-

caque LFPs16 and demonstrates that this model (Figure 2B) is

robust across a range of parameter combinations (Figures S4E

and S4F). For sufficiently large stimulation (large amplitude,

spatial extent, or both), themodel’s dynamics cross a bifurcation

and transition to a high-firing, seizure-like state.24,30 This is

consistent with empirical studies showing limbic seizure attenu-

ation following inhibition of medial thalamus in rats,58 suggesting

that hyper-excitation of the medial thalamus plays an important

role in generating epileptic states. For the following sections, we

utilize a particular set of stimulus parameters (amplitude: 21 mV,

decay rate: 6), although our findings are qualitatively consistent

for all parameter values below the bifurcation boundary.

Simulation applied to cH areas facilitates a recovery of cortical

firing rates to pre-propofol levels, with cH (but not cL) stimulation

showing near full recovery (wake: 3:25± 0:03 s� 1; cH stimulation:

2:98± 0:11 s� 1; cL stimulation: 2:40± 0:02 s� 1). In addition to

recovering empirically observed alpha-band coherence,16,17 cH

stimulation yields a comparable recovery of low-dimensional

functional connectivity (Dexpvar 1 = 32%± 1%). Timeseries

measures, including susceptibility (Dc = 30% ± 1%), synchro-

nization variability (Dsq = 32% ± 1%), and mean autocorrela-

tion timescales (DtACF = 20%± 1%), likewise mirror recovery

from their anesthesia suppression. To enumerate this effect,

the similarity of propofol, cL, and cH stimulation states relative

to wake were quantified by calculating the sum of normalized

percentage differences (as shown in Figure 2C). This demon-

strates that cH (but not cL) stimulation induces a change in com-

plex adaptive dynamics that normalizes the brain to a state

similar to wake.

Multi-electrode electrical stimulation of the central-lateral (CL)

thalamus is found to promote conscious-like arousal,16,59–62 and

this effect was found to be markedly reduced with stimulation

targets outside CL—in particular, the centromedian (CM) thal-

amus. To determine whether the stimulation site in the thalamus

was consistent with empirical results, we inverted the thalamo-

cortical gradient to make an estimate of which thalamic nuclei

were stimulated in our model. Upon mapping stimulation targets

in our model to a common thalamic atlas,63 we find that high ma-

trix strongly corresponds to stimulation of the CL thalamus (Fig-

ure S7A) and, conversely, low matrix to CM stimulation (Fig-

ure S7B). Thus, our model results are consistent with these

empirical findings and provide further evidence for the role of

matrix thalamus in supporting arousal states.

The role of the thalamus in cortical information
processing
Next, we used three separate quantitative approaches to deter-

mine the role of the thalamus in shaping the response properties

of the cortex in waking and under propofol anesthesia. Firstly, a

10 ms excitatory pulse was applied to the excitatory cortical

population of two target areas in independent simulations (kH
and kL) and then baseline normalized—note that these stimula-

tions occurred on the cortical ‘‘e’’ populations and not the

thalamic ‘‘Sc/Sm’’ populations (Figure 1B). We observed clear

cortical evoked responses for both cortical targets, DQez5 Hz

(Figure 3A). Comparing these peak evoked responses across

the cortex in both the wake and propofol conditions following

cortical stimulation of the highest matrix region (kH; Figures 1D

and 3D) revealed that the local response in the anesthetic state

was similar to the awake, but the broader network response

was an order of magnitude smaller in the anesthetic than in the

awake state (Figure 3B). Furthermore, the normalized timeseries

shows that rebound ripples—recurring waves of activity induced

by the initial perturbation—are short lived under propofol relative

to wake (Figure 3C), reflecting a reduced memory timescale.

These patterns suggest that thalamocortical dynamics may at

least partially underpin observed spatiotemporal traveling waves

in resting-state cortical dynamics in humans.64–66

The differences in the consequences of stimulating cortical

areas with either low- or high-matrix thalamic inputs (e.g., kH
vs. kL) are evident from tracking the time-delayed activity pattern

as it spreads across the cerebral cortex (Figure 3D). Notably, a

serial activation pattern is observed for both targets (Figure 3D),

indicative of a traveling wave emanating from the stimulus target

site (Figure 3E). However, cortical responses to stimulation of kH
are more strongly synchronized with a broad co-activation

pattern (Figure 3D, left). This suggests that cortical regions that

are tightly coupled to the matrix cells of the thalamus can signal

broadly to other regions in parallel via the matrix thalamus and

its influence on L5 PT neurons, thus providing a plausible

neurobiological mechanism for modulating the formation and

dissolution of the cortical coalitions required for flexible cognitive

processing.24

To better quantify interregional information flow induced by

the thalamus, we used twomeasures from information theory: in-

formation storage, which quantifies the amount of information in

a system’s past dynamics available to predict its future dy-

namics (Figure 4A), and information transfer/transfer entropy,

which quantifies the amount of information in a system’s past dy-

namics available to predict another system’s future (Fig-

ure 4B).67,64 Based on previous work,65 we predicted that
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anesthesia should augment information storage, whereas stimu-

lation of the matrix thalamus and waking dynamics should

promote information transfer.66 Consistent with these predic-

tions, total information storage in our model was higher

and more variable under propofol relative to awake (CAwakeDi =
0:11± 0:002 [nats]; CApropDi = 0:21 ± 0:003 [nats]; paired t:

p < 10�16; Figures 4Ai–4Aiv). cH stimulation diminishes these

storage dynamics (CAhiDi = 0:16± 0:003 [nats]; paired t:

p < 10�16; Figure 4Aiii). In contrast, transfer entropy was

highest and most variable in wake and cH stimulation conditions

(CTwakeDi = 0:17 ± 0:003 [nats]; CThiDi = 0:21± 0:004 [nats];

Figures 4Biii and 4Biv) when compared with propofol and cL

stimulation (CTpropDi = 0:078± 0:001 [bits]; paired t: p < 10�16;

CTloDi = 0:09 ± 0:004 [nats]; paired t: p < 10�16; Figures 4Bi–

4Biii). Together, these results demonstrate that awake dynamics

in our model constitute a mode of moderate information storage

but high information transfer and that the matrix thalamus facili-

tates these corticocortical modes of information transfer.

Finally, we estimated the stability of systems-level neural dy-

namics following thalamic stimulation. To achieve this, we quan-

tified the likelihood that the pattern of activity in the brain (i.e., the

brain state) would change by a pre-specified amount (measured

using the mean-squared displacement) in a specific window of

time.68 This captures the moment-to-moment stability of dy-

namics—difficult-to-reach brain states are associated with a

high energy barrier, whereas unstable dynamics are associated

with a low energy barrier (see STAR Methods). A comparison of

simulated awake and propofol dynamics shows that anesthesia

causes a steepening of the energy landscape, yielding slow and

graded changes of dynamics (Figures 4A and 4B). That is, a brain

state trajectory to an increasingly novel state is unlikely under

propofol anesthesia when compared with the awake state. Inter-

estingly, cH stimulationmimics the observed effects of noradren-

ergic arousal system68 in that these cells act to flatten the energy

landscape, making novel state trajectories more likely, restoring

propofol states to the dynamic reconfigurations characteristic of

the awake state.

DISCUSSION

Corticothalamic circuits support fundamental states of aware-

ness and cognitive processes, but the mechanisms apportioned

to different thalamic populations remain poorly understood.

Here, we demonstrate that incorporating diffusely projecting,

non-specific matrix nuclei of the thalamus into a whole-brain

biophysical model facilitates integrated populations of pyramidal

neurons in the cortex, supporting large-scale coherent

signaling—a necessary condition for conscious awareness (Fig-

ure 1). Our biophysical model recapitulates several core empir-

ical findings, including reduced cortical coherence following pro-

pofol anesthesia and its recovery following electrical stimulation

of the matrix thalamus, as well as key features of complex adap-

tive systems (Figure 2). In addition, we demonstrate how the ma-

trix thalamus instantiates a corticocortical communication hier-

archy of parallel and serial processing modes (Figure 3) by

facilitating flexible switching between dynamics modes of high

information storage vs. high information transmission (Figure 4).

This biophysically derived neural mass model thus advances our

C E

DBA

Figure 3. Perturbation dynamics

(A) Evoked response of target regions cortical firing rate, Qe, following a 10 ms excitatory pulse applied to the cortical areas with the highest matrix thalamus

projections.

(B) Peak evoked response for each cortical region following pulse stimulation sorted by amplitude. Wake results for the model are shown in green, and propofol

results are shown in black.

(C) Timeseries of normalized evoked responses in the wake and propofol conditions. Regions of interest (ROIs) are sorted by amplitude.

(D) Single normalized evoked response for each cortical region following stimulation of a high- (kH) and low-matrix (kL) cortical region showing a propagating wave

of evoked response with different wave velocities. The colored areas highlight significant wave velocity differences, with the high matrix showing more parallel

activation of cortical areas (shaded red) than the more serial activation of regions seen following low-matrix stimulation (shaded blue).

(E) The spatial map of stimulus evoked response time to peak showing a propagating wave of evoked response that is not purely spatial. Stimulus targets are

shown in yellow.
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understanding of the specific roles of thalamic subnuclei in sup-

porting a broad repertoire of brain dynamics vital for awareness.

Electrophysiological recordings in humans69 and macaque

monkeys16 have shown wide-spread changes in coherent

cortical oscillatory dynamics following propofol anesthesia. Cor-

ticothalamic interactions have been argued to underpin these

coherent dynamics16,70,71; however, the mechanisms through

which this coordination occurs, and how the brain might exploit

it while avoiding transition into a hyper-synchronized state (such

as seizure), remains to be determined. In addition, distinct thala-

mocortical subclasses are known to display contrasting targeted

(core) and diffuse (matrix) cortical projection profiles.13,14,25

These subclasses have been shown to differentially augment

key corticocortical interactions during perception8,19,55,72 and

are disrupted by anesthetics.15 Deep brain electrical stimulation

of the central thalamus in macaque monkeys has been shown to

facilitate recovery of consciousness from propofol-induced loss

of consciousness. Our model unifies our understanding of these

independent empirical findings and provides evidence for the

involvement of matrix thalamic nuclei in supporting large-scale

coherent corticocortical communication important for con-

sciousness and cognition.

Matrix-to-core proportions greatly vary across the thalamus,

and the two extremes are present in the intralaminar thalamus,

which is comprised of anterior and posterior cell groups.73,74 In

the anterior group, the CL nucleus contains nearly all calbindin

cells and few parvalbumin cells (i.e., is high matrix, cH), whereas

in the posterior group, the CMnucleus and the parafascicular nu-

cleus contain nearly all parvalbumin cells and few calbindin cells

(i.e., are low matrix, cL
75). In our previous study,16 we microsti-

mulated via multiple closely spaced electrode contacts and

localized contacts to different central thalamic nuclei. We

measured the largest modulations of consciousness, and corre-

sponding electrophysiological measures such as alpha coher-

ence, when we stimulated the cH nucleus, CL.16,59–61 As the

location of stimulation sites moved further from the center of

the CL nucleus (Figure S1 of Redinbaugh et al.16) to areas with

lower matrix-to-core proportions, there was reducedmodulation

of consciousness, corresponding to reduced changes in electro-

physiological measures. As a specific example, stimulating the

low-matrix posterior intralaminar group corresponded to mark-

edly reduced or little effect on consciousness (Figure 1 of Redin-

baugh et al.16). These contrasting effects of stimulating high- and

low-matrix sites in vivo match those generated here in silico.

In addition to supporting coherent cortical dynamics, our

model predicts that the matrix thalamus facilitates several key

dynamical features of a complex adaptive system. Notably, we

find that the matrix thalamus promotes modes of high suscepti-

bility as well as variability in synchronous activity—i.e., flexible

shifts between segregated and integrated processing. In other

words, the matrix thalamus provides a neurobiological platform

for brain state complexity, as measured in vivo, with matrix stim-

ulation modulating a heightened state of entropy and integrated

information.60,61 The mechanism through which the matrix thal-

amus facilitates this modulation is a process known as criti-

cality76,77—for instance, a maximally susceptible system is one

poised at a critical point (and vice versa).78 To a first approxima-

tion, the diffuse projections of thematrix thalamus act analogous

A

B

C

Figure 4. Information capacities and energy landscapes

(A) Active information storage of model firing rate timeseries.

(B) Transfer entropy of model firing rate timeseries.

(C) Mean-squared displacement of BOLD-transformed model firing rate states is calculated as a function of consecutive time points and the corresponding

energy (logarithm of inverse state probability) of these states. Then, the averagemean-squared displacement (MSD) vs. energy from awithin a window of time (t =

0.12–0.155 s) is plotted. (i)–(iv) denote the four different states interrogated in our study.
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to temperature in the Ising model and drive each corticothalamic

region toward a locally defined critical point. This allows the sys-

tem to support a wide range of distinct information processing

benefits, including increased susceptibility, state diversity, pro-

longed timescales, and production of complex dynamic trajec-

tories. In the present model, stimulating the matrix thalamus

pushes the whole system toward criticality and can compensate

for the reduction of connectivity resulting from anesthetic

induced inhibition—which pushes it away from criticality—

much like a temperature dial turning down under anesthetic

and back up under thalamic stimulation. The brain undoubtedly

has many mechanisms to provide this effect and likely can pro-

vide it in both more coarse as well as more targeted ways.79 In

particular, stimulation of other diffuse nuclei projecting to the

cortex, such as the locus coeruleus, is predicted to provide a

similar effect.

Information theory provides another formal perspective on the

impact of the matrix thalamus in shaping cortical dynamics. Our

results show that matrix projections to the cerebral cortex act to

dissolve the local stable attractor dynamics supporting informa-

tion storage in a manner that facilitatesmodes of high information

transfer (Figure 4). These channels of information transfer follow

the structural connectivity of our model and highlight how large-

scale integration, via corticocortical structural connectivity, can

be balanced with locally segregated information processing.

Our results converge with previous modeling work, which re-

vealed that, near a critical boundary of a neural system, changes

in gain move the system into an integrated regime and act to in-

crease transfer entropy80 across a large-scale neural network

while reducing active information storage.65 Together, our results

demonstrate how the diffusely projecting matrix thalamus may

promote the formation (and dissolution) of unique ensembles of

excitatory cortical populations to share information in such a

way that catalyzes the formation of novel global brain states.

The corticothalamic system connects strongly with the

neuromodulatory system,21 which is strongly implicated in the

neurobiology of arousal.81 The impact of neuromodulatory

neurotransmitters on the thalamus is well defined—acting via G

protein-coupled second-messenger systems,21 neurochemicals

such as noradrenaline and acetylcholine cause a confirmational

change in thalamic cells that closes a T-type calcium channel,

thus allowing thalamic cells to spike in a tonic-firing mode char-

acteristic of the awake brain. Similar effects are known to occur

in the cerebral cortex21,82,83 and highlight a key feature of the

ascending neuromodulatory system—the widespread projec-

tions of the system implement a globally impactful signal that

can be incorporated distinctly in target regions, depending on

the presence (or absence) of specific neuromodulatory recep-

tors.53 We expect that the delineation of the precise interactions

between the neuromodulatory system and the matrix thalamo-

cortical mechanisms described in this article will accelerate our

understanding of the manner in which the brain implements the

processes that form the basis of a wide array of functional states.

For instance, the diffuse projections of the matrix thalamus are

still less diffuse than those of the locus coeruleus,84 suggesting

that the thalamus may provide a local augmentation of the sys-

tems-level topological effects mediated by the arousal system.

In light of the rest of our findings, this feature may have important

implications for supporting a diversity of active neural coalitions

in parallel. Our model omits these interactions, and this presents

an important avenue for future model extensions.

In previous work,24 we showed that diffuse projections, be

they from non-specific/matrix thalamocortical neurons or indeed

noradrenergic subcorticocortical projections from the locus co-

eruleus, could promote quasi-critical states, forming a key

component of consciousness and adaptive cognition. The pre-

sent work applies this approach specifically to the matrix thal-

amus and its impact on the cerebral cortex and, in doing so,

demonstrates how this principle can explain an empirical obser-

vation—namely that stimulation of specific thalamic regions is

sufficient to recover consciousness under anesthetic. The effect

of matrix thalamic stimulation on the whole corticothalamic sys-

tem necessarily depends on state of the system when stimula-

tion is applied. If the system was more inhibition dominant, stim-

ulation may have the opposite effect. Crucially, this parameter

regime would no longer reproduce key features used for empir-

ical comparison, i.e., EEG and fMRI. That is why fitting the model

before applying stimulation is crucial to ensuring that appro-

priate conclusions can be drawn from the stimulation’s effect.

Limitations of the study
While the inclusion of different modeling elements is flexible, it is

important to note that these model parameters are highly non-

arbitrary in that they are based on decades of previous work

that has been both theoretically and empirically verified across

a range of experiments.29,85 The primary benefit of our approach

is that any emergent dynamics of our model are directly relatable

to specific features of the neurobiological elements used to

populate the model architecture. That is, the features of our

model do not represent the only means by which similar emer-

gent properties can be instantiated—rather, they represent a pu-

tative neurobiological mechanism through which the properties

we measure from the system as a whole can be realistically ex-

plained. This is precisely why the fits to data, while far from per-

fect, represent such a crucial feature of this highly iterative pro-

cess. That is, a model cannot rule out other mechanisms not

considered—it can only provide candidate mechanisms that

can (and should) be tested further experimentally. In the present

study, we have demonstrated that diffuse connectivity from the

matrix thalamus can explain the observation that thalamic stim-

ulation can recover consciousness under anesthesia and,

further, have provided understanding for the role of the

thalamus in supporting corticocortical communication. Addi-

tional anatomical and neurochemical complexity not considered

herewill undoubtedly enrich this understanding and forms part of

the essential interplay between theoretical and empirical

approaches.

Another potential limitation of this work is the generalization of

cortical firing rates to 3 Hz in order to balance excitation and in-

hibition in the model. While the heterogeneous core-matrix

gradient breaks this homogeneity, defining regional specific

firing rates as shown in Figure S9, unique cell types across the

human brain demonstrate a diversity of firing rates not captured

in the present model.86,87 In addition, the granularity of

cortical populations presented here—i.e., only two populations

for the entire cerebral cortex—limits the translation of these
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cell-specific firing rate distributions. The next iteration of large-

scale models with a richer resolution of cortical populations will

be able to tease apart these contributions and presents exciting

avenues for future studies.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human neuroimaging dataset
Participants

Sixty-five healthy, right-handed adult participants (18–33 years) were recruited, of whom 60 were included in the final analysis

(28 females). Participants provided informed written consent to participate in the study. The research was approved by The Uni-

versity of Queensland Human Research Ethics Committee. These data were originally described in.46

METHOD DETAILS

Corticothalamic model
The corticothalamic model consists of 400 coupled neural masses. We outline this architecture by first detailing the corticothalamic

neural mass as follows. The corticothalamic neural mass model used in this work contains four distinct populations: an excitatory

pyramidal cell, e, and an inhibitory interneuron, i, population in the cortex; and two excitatory nuclei, matrix, sm; core, sc, and inhibitory

thalamic reticular nuclei, r, population in the thalamus (Figure 1C). The dynamical processes that occur within and between popula-

tions in a neural field model are defined as follows:

For each population, the mean soma potential results from incoming postsynaptic potentials (PSPs):

VaðtÞ =
X
b

VabðtÞ (Equation 1)

where VabðtÞ is the result of a postsynaptic potential of type b onto a neuron of type a and a;b˛ fe; i;r;sg. The postsynaptic potential

response in the dendrite is given by

DabVabðtÞ = nab4abðt � tabÞ (Equation 2)

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Human neuroimaging regional correlations This paper Zenodo: https://doi.org/10.5281/zenodo.

8072497

Software and algorithms

MATLAB The mathworks www.mathworks.com

nftSim Sanz-Leon et al.27 github.com/BrainDynamicsUSYD/nftsim

Model and data analysis source code This paper Zenodo: https://doi.org/10.5281/zenodo.

8072497
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where the influence of incoming spikes to population a from population b is weighted by a connection strength parameter nab =

Nabsab, with the mean number of connections between the two populations Nab and sab is the mean strength of response in neuron

a to a single spike from neuron b. tab is the average axonal delay for the transmission of signals, and 4ab is themean axonal pulse rate

from b to a.

The operator Dab describes the time evolution of Vab in response to synaptic input,

Dab =
1

ab

d2

dt2
+

�
1

a
+
1

b

�
d

dt
+ 1 (Equation 3)

where b and a are the overall rise and decay response rates to the synaptodendritic and soma dynamics.

The mean firing rate of a neural population QaðtÞ can be approximately related to its mean membrane potential, VaðtÞ, by,

QaðtÞ = Sa½VaðtÞ� =
Qmax

a

1+exp½ � fVaðtÞ � qag=s0� (Equation 4)

which define a sigmoidal mapping function Sa with a maximal firing rate Qmax
a , a mean firing threshold qa, and a standard deviation of

this threshold s0p=
ffiffiffi
3

p
.

The mean axonal pulse rate is related to the mean firing rate by,

DaðtÞ4aðtÞ = QaðtÞ (Equation 5)

DaðtÞ =
1

g2
a

v2

vt2
+
2

ga

v

vt
+ 1 (Equation 6)

here, ga = va=ra represents the damping rate, where va is the propagation velocity in axons, and ra is the characteristic axonal length

for the population.

A network of 400 corticothalamic neural masses were simulated using the neural field simulation software, nftSim.28 The param-

eters for each neural mass were identically set to ‘‘eyes-closed’’ estimates given in Table 1,28,30,33,85,88 which results in simulated

activity with a 1/f spectrum and a peak in the alpha frequency band (8–13 Hz) in the absence of network coupling. These are example

parameters representative of the ‘‘eyes-closed’’ state following Bayesian model fits to human EEG power spectra.33 Many preceding

studies29,30,33,85,88–90 have shown the linear transfer function, which drives the linear spectral content of the corticothalamic model, is

derived and shown to be low-dimensional, i.e., only a few loop gains in the system are needed to capture the key features of the po-

wer spectra. In this particular context, the eyes-closed state of human EEG has a 1/f slope and a spectral peak at in the 8-13Hz alpha

frequency band, and this is explained by a weakly damped thalamocortical loop gain (ese). For the present study we have selected

characteristic parameters for this power spectrum (Table 7 from33). Note that this spectrum describes modulations of firing rate

around a fixed point, which are static for the network (see Figure S9). These spike rate modulations in neurons drive changes in

the extracellular electric field which are then measured via EEG and LFP recordings.34 In this way, we are able to compare our model

outputs to empirical data through the power spectral density function.

Each simulation was run for a total of 64s with 7.5s of initial transients removed using an integration timestep of Dt = 2� 13 s. This

minimizes contributions from the model’s initial state and ensures the integration algorithm has stabilized before we begin analysing

simulation outputs. Longer simulations produced qualitatively identical results, as did shorter simulations (see Figure S8) however,

many of the analysis measures presented in this paper perform better withmore data – i.e., correlation and coherence are noisier with

less data. Thus, a balance between metric accuracy, resource allotment, and tractability for dataset manipulations was chosen. All

outputs were down-sampled to 200Hz for tractability. All remaining data was used for subsequent analysis.

Structural connectivity
The structural connectivity used to define themodel network consists of a combination of distance dependence and long-range con-

nectivity estimated from white-matter fiber densities measurement.39 The distance dependence was generated via an exponentially

decreasing function. First, the geodesic distance between all nodes, which correspond to parcels from27 with MNI coordinates, are

calculated along the fsaverage cortical surface mesh91 using the Fast-Marching algorithm (Gabriel Peyre (2022)ToolboxFastMarch-

ing:https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching). The geodesic distances are then

scaled as an exponentially decreasing function of distance,

Gij = e� ldij

where dij is the geodesic distance in MNI space along the surface mesh and l is the decay rate. A 200 3 200 connection matrix is

defineds in this way for each hemisphere. We further assume that interhemispheric connectivity is symmetric and one-to-one, and

thus the full 400 3 400 distance dependence network is composed as,
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M =

2
4GLH

ij GRH
ij

GLH
ij GRH

ij

3
5

where GLH
ij and GRH

ij are the left and right interhemispheric connectivities, respectively.

The complete network connectivity is then formulated via the summation of the distance dependence matrix and the empirically

estimated white-matter connectivity (both normalized by their respective maximum values). Since the strength of these connections

is not known empirically, we follow other approaches and sweep values of a global scaling of this hybrid connectionmatrix, as well as

the proportion of distance dependence-to-white-matter connectivity and distance decay rate parameter. Functional connectivity of

these parameter sweeps is then compared to empirical resting-state BOLD data92 to define optimal values (see Figure S2).

Model balancing
In order to maintain stability in the model, excitatory inputs to a given node, coupled via the structural network connections, must be

balanced with a corresponding inhibition. To do this, we first compute the total excitatory connection strength to each corticothala-

mic node.

We then leverage an assumption from previous neural field models, namely that excitatory and inhibitory synapses in the cortex

can be assumed proportional to the number of neurons.90,93 This random connectivity approximation results in nee = nie, and nei = nii

which implies Ve = Vi andQe = Qi. Inhibitory population variables can then be expressed in terms of excitatory quantities. Whilst we

do notmake this assumption in the present model, we can leverage it to refine an inhibition scaling that balances the excitatory inputs

from our specific structural network.

In the reduced corticothalamic neural mass, the fixed-point attractors, or steady states are found by setting all time derivatives in

the above equations to zero. The steady-state values 4
ð0Þ
e of 4e are then given by solutions of,

S� 1
�
4ð0
e

� � ðnee + neiÞ4ð0Þ
e = nesS

�
nse4

ð0Þ
e + nsrS

�
nre4

ð0Þ
e +

nrs

nes

n
S� 1

�
4ð0
e

� � ðnee + neiÞ4ð0Þ
e

o	
+ nsn4

ð0Þ
n



(Equation 7)

where4
ð0Þ
n is thesteadystatecomponentof the input stimulus.93,94RootsofEquation7are foundusing the fzero() function fromMATLAB.

Following similar approaches,44 we leverage Equation 7 by setting nee equal to each corticothalamic neural masses network

coupling defined by the structural connectivity. We then set the cortical firing rate to be 3Hz, in-line with empirical observations,

and numerically solve for cortical inhibition nei. This results in each neural mass having a 3Hz steady-state cortical firing rate across

the network, despite having heterogeneous network connectivity.

Note that the diffuse matrix inputs to each corticothalamic neural mass are excluded from this balancing as they are purely excit-

atory and only target the excitatory cortical population. Thus, the overall effect of matrix inputs is to distort each local attractor,

increasing their firing rates when they are coupling to the network.24 In addition, matrix nuclei are known to project to the reticular

thalamic nucleus in rodents,14,95–97 albeit weakly,98 but have been excluded from the current model for simplicity.

Modeling propofol
The effect of propofol is modeled as an up-regulation of GABA-a receptors which prolongs inhibitory postsynaptic response

potentials. This is implemented as an increase to the synaptodendritic functions (Equation 3) decay rate parameter, a, for all inhibitory

connections in the corticothalamic neural mass. In addition, consistent with previous approaches,26 we maintain a constant peak

amplitude of the IPSP functions following the rescaling. The solution to Equation 3 for a delta function input corresponds to,

V =
ab

ðb � aÞ
�
e�at � e� bt

�

which has a peak amplitude at tpeak =
lnb=a
ðb�aÞ . The rescaling of a = a0=r defines a new peak potential at tpeak which is renormalized to its

pre-propofol value. We leverage the change in coherent alpha-band activity (8-13Hz) observed in16 between LIP and FEF to optimize

propofols effect in the model, as shown in Figure S3, which results in r = 1:127.

Matrix stimulation
Due to the low-pass filtering of both the synaptodendritic and somatic compartments, excitatory periodic stimulation to a given

population in the model is well-approximated by a first-order constant voltage perturbation, and a higher order oscillatory perturba-

tion – as shown in Figure S3A. Since the oscillatory component of the evoked response will be shaped by a complexity of biophysical

timescales not completely considered here, we instead approximate stimulation as a constant perturbation and explore the effects of

its amplitude and spatial extent on the present large-scale model.

Human neuroimaging acquisition
10min (1,050 TRs) of whole-brain 7T resting state fMRI echo planar images were acquired using a multiband sequence (acceleration

factor = 5; 2 mm3 voxels; 586 ms TR; 23 ms TE; 40� flip angle; 208 mm FOV; 55 slices). High resolution anatomical images were also

collected to assist functional data pre-processing (MP2RAGE sequence – 0.75 mm3 voxels 4,300 ms TR; 3.44 ms TE; 256 slices).
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Data pre-processing
DICOM images were first converted to NIfTI format. T1 images were reoriented, skull-stripped (FSL BET), and co-registered to the

NIfTI functional images using affine. Segmentation and the DARTEL algorithm were used to improve the estimation of non-neural

signal in subject space and the spatial normalization. The aCompCor method99 was used to regress out residual signal unrelated

to neural activity (i.e., five principal components derived from noise regions-of-interest in which the time series data were unlikely

to be modulated by neural activity). Participants with head displacement >3 mm in >5% of volumes in any one scan were excluded

(n = 5). A temporal band-pass filter (0.071 < f < 0.125 Hz) was applied to the data. Following pre-processing, themean time series was

extracted from 400 pre-defined cortical parcels using the Schaefer atlas.27

QUANTIFICATION AND STATISTICAL ANALYSIS

Complex adaptive dynamics measures
Hemodynamic modeling

The simulated cortical firing rate timeseries from the model was convolved with a canonical hemodynamic response function with a

time step of 0.586s (chosen to mimic the timescale of the empirical data).

Functional connectivity

The functional connectivity of the model was calculated as the pairwise Pearson correlation of the simulated BOLD timeseries for

each node pairing in the network.

Regional diversity

Regional diversity was calculated as the variance of the upper triangle of the functional connectivity matrix – i.e., the Pearson

Correlation matrix of the simulated BOLD timeseries.

Dimensionality

Principal Component Analysis was calculated on both the excitatory cortical firing rate timeseries data, and the simulated BOLDdata.

The dimensionality of the data was then approximated as the percentage variance explained by the first principal component.

Network timescale

For both the cortical firing rates, and simulated BOLD response data, the network timescale was estimated by fitting an exponential

function to the autocorrelation function (ACF). Specifically, we calculated the autocorrelation function, using MATLAB’s autocorr(),

found the first positive inflection point, and fit an exponential function to the network average AFC for all values below this point.

The exponent from this fitting captures the decay rate of the AFC and was used as an approximation of the networks timescale.

Coherence

The coherence between cortical excitatory timeseries xðtÞ and yðtÞ is calculated as

g2
xyðfÞ =

SxyðfÞ
2

SxxðfÞSyyðfÞ
where SxyðfÞ is the cross-spectral density and SxxðfÞ and SyyðfÞ are the power spectral densities of xðtÞ and yðtÞ, respectively. The
coherence was calculated using 30 time windows with 50% overlap.

Susceptibility

The data is first normalized as a Z score in time. At each time point the number of nodes above the mean (zero in this case) is calcu-

lated as a density ratio, d. Susceptibility is then calculated as,

c =

�
Cd2Dt � CdD

2

t

�
CdDt

Synchronization variance

The simulated BOLD timeseries data is first down-sampled to 0.01Hz and then bandpass filtered between 0.1 and 0.01 Hz. Next the

Hilbert transform is calculated on the filtered data and used to give the Kuramoto order parameter defines as follows,

RðtÞ =

 P
N

k = 1

ei4k ðtÞ


N

where 4kðtÞ are the instantaneous phases of each narrowbandBOLD signal at node k. Metastability is then calculated as the temporal

variance of the Kuramoto order parameter.

Energy landscapes

Following methodology from previous work,68 we formulate an energy landscape by first computing a 1-dimensional measure of tra-

jectories on our normalized (z-scored) timeseries data, namely the mean-squared-displacement, which is defined as,

MSDt;t = CjXt+t � Xtj2Dk
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Averaged over all k nodes of the network. The probability of observing a given MSD across the entire timeseries was then calcu-

lated using a Gaussian kernel density estimation,

PðMSD; tÞ =
1

4N

Xn

i = 1

K

�
MSDt;i

4

�

where KðuÞ = 1
2
ffiffiffi
p

p e�
1
2u

2
. As is typical in statistical mechanics the energy of a given state, Es, and its probability are related by PðsÞ =

1
Ze

� Es
T where Z is the normalization function and T is the scaling factor equivalent to temperature in thermodynamics.68 In our analysisP

s

Ps = 1/Z = 1 by construction and we can set T = 1 for the observed data. Thus, the energy of each MSD at a given time-lag t, E

is then equal to the natural logarithm of the inverse probability, PðMSD; tÞ of its occurrence,

E = ln

�
1

PðMSD; tÞ
�

Information measures
Active Information Storage and Transfer Entropy are calculated for all nodes and between all node pairs, respectively, using the JIDT

software package,67 and a Gaussian estimator with a timeseries history length, 1% k%10, selected by the toolbox in order to maxi-

mise bias-corrected active information storage on the target process.100,101

Power spectral modes
Following,54 the activity spectrum used in Figure S6 is generated by first calculating the cross-coherence between each cortical re-

gion. Then at each frequency, the first eigenmode of the cross-coherence matrix is used to determine the dominant coherence

topology.
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