
Article https://doi.org/10.1038/s41467-023-42465-2

Neuronal connected burst cascades bridge
macroscale adaptive signatures across
arousal states

Brandon R. Munn 1,2,3 , Eli J. Müller 1,2,3, Vicente Medel 1,4,
Sharon L. Naismith1,5, Joseph T. Lizier 3,6, Robert D. Sanders7,8 &
James M. Shine 1,2,3

The human brain displays a rich repertoire of states that emerge from the
microscopic interactions of cortical and subcortical neurons. Difficulties
inherentwithin large-scale simultaneous neuronal recording limit our ability to
link biophysical processes at the microscale to emergent macroscopic brain
states. Here we introduce a microscale biophysical network model of layer-5
pyramidal neurons that display graded coarse-sampled dynamics matching
those observed inmacroscale electrophysiological recordings frommacaques
and humans. We invert our model to identify the neuronal spike and burst
dynamics that differentiate unconscious, dreaming, and awake arousal states
and provide insights into their functional signatures. We further show that
neuromodulatory arousal can mediate different modes of neuronal dynamics
around a low-dimensional energy landscape, which in turn changes the
response of themodel to external stimuli. Our results highlight the promise of
multiscale modelling to bridge theories of consciousness across spatio-
temporal scales.

The human brain is capable of a rich variety of configurations across
levels of arousal, ranging from states of unconsciousness (e.g., sleep or
anaesthesia), the perplexing state of dreaming (i.e., externally dis-
connected consciousness), to the complex, ever-changing patterns
that characterise the waking state1–3. Different arms of the subcortical
ascending arousal system act as the controllers of these global state
transitions4–7 that have long been differentially detected inmacroscale
empirical recordings (such as electroencephalography—EEG and
electrocorticography—ECoG)8,9. Despite close contact with empirical
signatures of arousal transitions1,6,10, the precise neurobiological
mechanisms by which the specific and nonspecific thalamic nuclei and
the ascending arousal system10–14 (Fig. 1a) interact with cortical

neurons to mediate these arousal state transitions remain poorly
understood. Recent advances in the study of anaesthesia have facili-
tated experimental strategies to differentiate changes in conscious-
ness across arousal2,8. However, parallel analytic advances are
necessary to illuminate the fundamental neuronal mechanisms
responsible for each arousal state.

Testing these ideas empirically is inherently challenging. For
practical reasons, the transitions between arousal states have pre-
dominantly been studied in coarse-sampled macroscale (i.e., brain
regions to whole-brain) recordings. For instance, complex, adaptive
signatures such as information theoretic measures of transfer entropy
(the directed statistical dependence between a source and a target
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time series15–18), integrated information (the information integrated by
the interactions within the system19,20), topological integration (sys-
tems-level coordination of brain regions10,21), and temporal complexity
(the ‘dictionary’ size required to recreate the signal22,23) have all been
shown to change across levels of arousal. However, our understanding
of the underlying neuronal-level processes that support these emer-
gent properties is limited, due to a difficulty in simultaneous large-
scale neuronal recordings and the complexity of multiscale
modelling24,25. As a result, the neuronal dynamics that facilitate the
differential functional properties of a given arousal state (e.g.,
responsivity and variability to an external stimuli) and their informa-
tion processing modes, remain elusive.

Although the neuronal features that support arousal are diverse
and varied, there is emerging evidence that burst-firing in thick-tufted
layer 5 pyramidal neurons (L5PN) plays an integral causal role26–29.
Distinctive among cortical pyramidal neurons, inputs to L5PN basal and
apical dendrites (Fig. 1b) are physically and electrotonically separated
by a protracted apical trunk. Due to this physical separation, apical
dendritic post-synaptic potentials do not typically induce basal
somatic action-potentials (‘spikes’)—as the voltage attenuation along
the apical trunk is effectively enhanced by dense hyperpolarisation-
activated cyclic nucleotide-gated channels within the apical integra-
tion zone30,31. However, if the apical input exceeds this electrotonic
separation, apical calciumspikes are able topropagate down the apical
trunk, and convert coincident somatic sodium regular spikes (Fig. 1c,
green) into a high-frequency burst of spikes (Fig. 1c, yellow)32,33.

Anatomically, L5PN exist at the intersection of various cortico-
cortical and subcortical neural streams that are heavily intertwined
with the arousal system. For instance, L5PN apical dendrites receive
top-down cortical feedback34, diffusely projecting thalamic
projections35–37, along with neuromodulatory inputs from the

cholinergic (ACh)38 and noradrenergic (NAd)39 systems (Fig. 1a). In
contrast, the basal dendrites receive bottom-up feedforward cortico-
cortical and targeted thalamocortical input32,36. Notably, the coupling
between apical and basal compartments (and hence the capability to
burst-fire) in L5PN has recently been shown to be disabled by a range of
anaesthetic agents, suggesting that L5PN are sensitive to changes in
arousal33. However, advances are required to link these neuronal
mechanisms to emergent dynamics at the scale of whole-brain
recordings.

Macroscopic recordings of neural activity, such as electro-
encephalography (EEG) and electrocorticography (ECoG), are pre-
dominantly reflective of summed activity emerging from pyramidal
neurons aligned perpendicular to the electrode24,40. Of pyramidal
neurons, which are the predominant excitatory cells in the cerebral
cortex, the largest is the L5PN

41. Due to its size and perpendicular
orientation to the pial surface, L5PN are capable of the most significant
dipole moment (in contrast to smaller supragranular pyramidal neu-
rons or spherical interneurons) and contribute significantly to mac-
roscale electrophysiological measurements24. Thus, L5PN spiking
dynamics are dependent upon both the state of the cell as well as the
broader network, and their activity is largely responsible for the
empirical signatures estimated frommacroscale recordings. This leads
to a clear, testable prediction: the activity of coordinated bursting in
populations of L5PN should recreate keymacroscopic signatures of the
awake-conscious state. Unfortunately, large-scale recording from L5PN
activity across arousal states is technically prohibitive, which impedes
our ability to test their cross-scale role directly.

To remedy this problem, we created a biophysically reduced dual-
compartment network of L5PN with subcortically mediated cellular
properties that we could use to interrogate the impact of arousal
across microscopic and macroscopic scales. Altering these properties
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Fig. 1 | Nonlinear layer 5 pyramidal neurons link across scales and network
model architecture. a The ascending arousal system (AAS) and thalamus are
pivotal for controlling arousal state and project to the cortex through specific
(targeted) and nonspecific (diffuse) projections, such as the nucleus basalis of
Meynert (nbM) and Locus coeruleus (LC). b Layer 5 pyramidal neurons dominate
macroscale electrophysiology due to their large and parallel dipole moments.
Thick-tufted layer 5 pyramidal neurons consist of basal (L4-L6) and apical (L1-L2/3)
dendrites that are physically and electrotonically separated by the apical trunk. The
two dendritic regions receive differential input across specific/nonspecific pro-
jecting thalamic and ascending arousal fibres. c Constant current driven into basal
dendrites generates regular action potentials (‘spikes’; green), whereas simulta-
neous activation of apical and basal dendrites can transition the cell into high-

frequency spiking (ʻburstsʼ; yellow). d We simulate activity in a network of bio-
physical dual-compartment pyramidal neurons. e We explore two parameters the
apical-basal compartment coupling (β)—controlling the electrotonic threshold
required for the apical activity to transition the basal compartment into burst firing
—and the spatially correlated apical compartment input (σ)—whether bursts can
occur between adjacent and reciprocally connected neurons, which are modified
by subcortical structures. f Sub-panels denote different regions of the state space
(model parameters) leading to different combinations of (top) neuronal spiking
(green) and bursting (yellow), and (bottom) coarse-sampled population activity
(normalised per cell) for identical system input—(i) low β and intermediate σ; (ii)
intermediate β and low σ; (iii) intermediate β and high σ; and (iv) high β and
intermediate σ.
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led to heterogenous patterns of population-level dynamics—integra-
tion, complexity, and integrated information—that werematched with
macroscale ECoG recordings of non-humanprimates as they transition
between sleep and wake9, as well as with human scalp EEG across the
conscious states of wake and self-reported dreaming and anaesthesia-
induced loss of consciousness8. After fitting the model parameter
state-space to macroscopic data, we inverted the model to determine
the microscopic features that characterise the firing patterns of L5PN
across these arousal states. This allowed us to differentiate arousal
states of consciousness (anaesthesia/sleep unconsciousness to
dreaming and awake consciousness) across twomodel axes. Strikingly,
the awake regime of our model uniquely supported broad cascades of
spatiotemporally connected bursting increasing information storage
and transfer entropy. Within the awake regime, neuromodulation
altered low-dimensional energy landscape topographies, as well as
neural variability and responsivity to a broad range of external stimuli.
In this way, we demonstrate howmultiscalemodelling, whenmatched
with empirical data, can reveal both the underlying neuronal dynamics
and functional information processing benefits across arousal states
and hence provide a robust empirical validation of theories of
arousal1,3.

Results
Nonlinear dual-compartment neuronal network model
Weconstructed a spatially embeddednetwork of nonlinear neurons, in
which each simulated neuron consisted of two coupled compartments
—a basal and an apical dendritic compartment (Fig. 1d). This allowed us
to recapitulate the multi-compartment coupling and burst firing
dynamics in L5PN

42. The apical compartment was modelled as a tem-
poral integrator switch. The presence of coincident apical drive that
exceeds the apical-somatic electrotonic separation across the pre-
ceding 25 ms34 caused the apical compartment to switch the somatic
spiking properties from a regular spiking to a burst firing mode. By
utilising Izhikevich quadratic-integrate and fire neurons42,43, we simu-
lated biologically plausible spike profiles while retaining computa-
tional efficiencies (i.e., avoiding multiple channel kinetics across
multiple compartments), which allowed us to simulate the systems-
level interactions of thousands of nonlinear L5PN. The somatic com-
partments were coupled to one another via a difference-of-Gaussian
(i.e., ‘Mexican-hat’) synaptic coupling—the sum of an excitatory and
inhibitory exponential decay, where excitation exceeds inhibition
locally and vice versa at larger spatial scales—which captures both
biophysical local excitatory and lateral inhibitory effects44.

To systematically examine the effects of arousal on L5PN, we
altered two critical parameters of the model: the amount of apical-to-
basal dendritic coupling (β) and the role of spatially correlated apical
dendritic drive (σ; Fig. 1e). β controls the apical-somatic electrotonic
threshold required for the apical activity to transition the somatic
compartment into burst firing. Many biological factors alter β, for
example, NAd (via the locus coeruleus—LC) α2a receptor-mediated
closure of HCN channels along the apical shaft45; diffusely projecting
thalamic activity targeting oblique dendrites33; increased apical drive
such as following ACh depolarising M1 receptors

38; or top-down cor-
tical feedback30. β ranges from decoupled (β=0; Fig. 1fi) where L5PN
cannot burst, to coupled (β = 1; Fig. 1fiv) where all L5PN spiking activity
consists of bursts. In contrast, σ captures the spatiotemporal coordi-
nation of burstingmediated by differential spatially correlated profiles
of drive to the apical dendrites—modelled by convolving the white-
noise apical input with a two-dimensional gaussian with S.D. = σ—
ranging across spatiotemporally decorrelated (σ = 1; Fig. 1fii) to corre-
lated apical dendritic input (σ =N; Fig. 1fiii). Biologically, nonspecific
projections (Fig. 1a red) to the apical layers, such as via the nonspecific
thalamus35,37 or ascending arousal system (such as the LC or dorsal
raphe)45 will increase σ promoting connected bursting. In contrast,
targeted projections (Fig. 1a blue), such as cholinergic inputs from the

nucleus basalis ofMeynert (nbM)46 or specific thalamic projections35,37,
will decrease σ, leading to a decrease in connected bursting.

We simulated 20 s of neuronal activity for each parameter com-
bination (‘state’), with identical white-noise drive (summation of sto-
chastic afferent spikes47) to basal and apical (before σ apical spatial
smoothing) compartments to compare the role of β and σ in the
emergent dynamics. The combination of nonlinear neurons, apical-
basal coupling, and differential apical input was sufficient to create
substantial heterogeneity in the emergent spiking dynamics of the
model (Fig. 1f). We constrained the model such that the mean firing
rate ranged between 2Hz without bursting (β=0) and 30Hz for
maximal bursting (β = 1), which matches known physiological
constraints30,48.

We then calculated coarse-sampled activity by dividing the net-
work into 100 non-overlapping spatial clusters, following a 10×10 grid.
While this mesoscale is multiple orders of magnitude less coarse than
typical ECoG or EEG recordings, these patterns can in principle be
treated as similar to local field potentials, and we hypothesise that
changes in the simulated mesoscale dynamics are informative of
changes in empirical macroscale dynamics. In this way, a state is
described by a precise combination of β and σ, and the nonlinear
network model of L5PN can reproduce differential scales of activity—
frommicroscaleneuronal spiking (Fig. 1f, green/yellowdots) to coarse-
sampled population activity (Fig. 1f, lines).

The combination of nonlinear neurons and spatiotemporally
correlated dendritic input was sufficient to create substantial hetero-
geneity in the model’s emergent, coarse-sampled dynamics. For
example, low apical-basal coupling spiking activity is sparse and
asynchronous (Fig. 1fi, bottom), whereas for intermediate coupling the
population activity is highly variable and asynchronously/synchro-
nously coordinated (Fig. 1fii/1fiii) with uncorrelated/correlated apical
input, respectively. Furthermore, increasing apical-basal coupling (β)
leads to dense population bursting (Fig. 1fiv).

Bridging neuronal to coarse-sampled signatures of complex,
adaptive dynamics
Weexploredhow themultiscale neural dynamicsdiffer fromneuron to
coarse-sampled across the model state space. At the neuronal scale,
the model state-space displays an increase in mean firing rate, with
apical-basal compartment coupling (β) consistent with the increase in
bursting (Fig. 2a). To further quantify this dynamical heterogeneity in
spiking variability dependent upon the state parameters, we calculated
two standard empirical neuronal measurements. First, the spike-count
Fano-factor (FF ; variance/mean), which quantifies the mean-
normalised firing rate variability and increased with β peaking at
maximal apical input correlation (σ) and intermediate-high values of β
but decreases again as β trended towards unity, suggesting that the
network became saturated once bursting was too prevalent (Fig. 2b).
Second, we explored how apically driven input may alter emergent
correlations between neuronal spiking activity. We found that inter-
mediate β was associated with an elevated, albeit low mean pairwise
spike-count correlation (rSC ; rSC

� �
<0.15; Fig. 2c), consistent with

experimental predictions47. These results demonstrate that a simple
dual-compartment model with reciprocally connected nonlinear
spiking neurons is capable of supporting substantial heterogeneous
spiking dynamics.

We were interested in whether our simple model could recapitu-
late neural dynamics observed across arousal, such as a sleep-to-wake
transition. Awide range of empirical epiphenomena has been linked to
changes in arousal; however, for brevity, we considered three para-
digmatic signatures of complex, adaptive dynamics known to dis-
criminate arousal from anaesthesia at coarser spatial scales. First, the
mean Kolmogorov complexity (KC)6,19,22,49, a univariate measure aver-
aged across each coarse-sampled signal reflecting the ‘dictionary’ size
required to recreate the signal where a larger dictionary suggests a
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more ‘complex’ signal22,23. Second, topological integration calculated
as the mean participation coefficient (PC)6, which quantifies the mul-
tivariate degree of connection between clusters of coarse-sampled
signals (obtained via the Louvain algorithm; see Methods) and has
been previously linked to fluctuations in arousal50. Last, integrated
information (Φ*) reflecting the multivariate information shared
through interactions within the model19,20.

The three measures varied substantially and distinctly across the
model state space. We observed a generalised increase in informa-
tional capacity (complexity) proportional to the coupling between
apical and somatic dendrites. This increase in information content is
consistent with the increased population firing rate51. However, we
found the maximal complexity occurred with intermediate-high api-
cal-basal dendritic coupling and spatiotemporally correlated apical
input (high σ high β; Fig. 2d). Increasing apical-basal coupling
increasednetwork integrationand correlated apical input (high σ) L5PN
led to a noticeable increase in topological integration that was most
pronounced for intermediate β, where at the two extremes increasing
apical-basal coupling led to an increase innetwork integration (Fig. 2e).
The maximal integration aligns with the peak in neuronal Fano-factor
and pairwise correlations rSC

� �
(Fig. 2b, c).

We next calculated integrated information (Φ*; Fig. 2f)19.Φ* was
estimated using mismatched decoding between the coarse-sampled
signals and their past at a time-lag of 15ms chosen as it led to the
maximal Φ*, consistent with empirical findings9,52. Φ* increased
generally with apical-basal coupling, consistent with information
complexity (KC) and integration (PC). However, we found that this
measure peaked with an admixture of regular spiking and bursting
aligningwith the peak in neuronal pairwise correlations (Fig. 2c). This
suggests that the mixture of both regular spikes (β= 50% apical-basal
coupling) and spatiotemporally coordinated input (σ! N) of L5PN
leads to an increase in the integrated information beyond that of the
increasing information capacity facilitated generally by increased
asynchronous bursting. The coarse-sampleddynamicswereobtained
using a perfectly non-overlapping subsampling (see Methods);
however, the measurements are consistent using partially over-
lapping coarse-sampling, as would be observed empirically53,54

(Fig. S1).

Importantly, these three complex, adaptive signatures were
selected due to their empirical use and to ensure a diverse set of
analytical approaches: for example, KC and Φ* reflect univariate and
multivariate information theoretic measures, while PC is a topological
measure. Their differentiation across the model parameter space
emphasises their utility to distinguish differential coarse-sampled
dynamics. Another typically utilised signature of macroscale arousal is
spectral band-limited power; however, this was not a focus of the
study, due to the extensive existing mean-field theoretical studies and
empirical fitting linking empirical spectra to thalamocortical reso-
nances (see refs. 55–57). For completeness, we calculated the spectral
slope (Fig. S2a)—an indicator of arousal—across the model state-space
and found a flattening of the spectral slope with increasing β coupling
between apical and basal dendritic compartments. That is to say:
coupling mediated bursting increases high-power and flattens the
spectral slope in a way that was strongly correlated with signal com-
plexity (KC).

Mapping model parameters to empirical arousal states
To investigate how these different brain-state regimes relate to the
empirically observed activity across arousal states, we analysed ECoG
recordings from macaque monkeys (Macaca fuscata; n = 2) as they
transitioned from natural sleep to awake. We segmented the record-
ings into non-overlapping 20 s epochs to ensure consistency with the
model simulations and then calculated the three signatures of com-
plex, adaptive dynamics. In both monkeys, the neural dynamics
increased in complexity, integration, and integrated information with
arousal (Fig. 3a). The changes in individual signatures across all stages
are statistically significant (p < 0.05, Kruskal–Wallis with correction for
multiple comparisons—see Supplementary Table 1 for a detailed
summary).

We next asked whether the different arousal dynamics (i.e., the
three-dimensional signatures) would coincide with our model’s pre-
dicted activity. To test this hypothesis, we utilised a hybrid particle
swarm and convex optimisation approach tominimise the summation
of the absolute relative difference between empirical and simulated
complex, adaptive dynamics across each epoch (see Methods). That is
to say, we found the optimal mapping from the three-dimensional
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signatures (Fig. 3b) to the two-dimensional model state space (Fig. 3c)
minimising the difference between empirical and model-simulated
complex, adaptive signatures. To achieve this we utilised a population-
based stochastic particle swarm58 to search themodel parameter space
before a fine-scale, interior-point nonlinear convex optimisation was
deployed to ensure the discovery of a precise global minimum (see
Methods).

We found that the model-inverted sleep, waking, and awake
parameters were localised and statistically distinct (p <0.01; Fig. 3c).
The teal regions in Fig. 3c demonstrate that the empirical sleep
dynamics are optimally matched with simulated coarse-sampled
dynamics of L5PN with low coupling (β<0.2). Waking moved the mat-
cheddynamics through a regimeof increased coupling (Fig. 3c yellow),
and the awake regime was dominated by transient spatially correlated
bursting (Fig. 3c red). Crucially, sleep and awake are significantly dif-
ferent regions of the model parameter space (p <0.001). The optimi-
sation swarm-fitting resulted in a tight match between the complex,
adaptive signatures identified in the model and empirical recordings
the model-matched measures were within 10% relative percentage
error of empirical values (e.g.,

KCf it�KCemp

KCemp
; Fig. 3d). To ensure the

robustness of our approach, we explored including the spectral slope
as a further fitting parameter. Consistent with the other measures, the
spectral slope varied across all three arousal states in the macaque
recording (Fig. S2b;p < 0.05KW) and the updatedfitting led to a subtle
change in inverted values (Fig. S3). Furthermore, removing parameters
and repeating the fitting procedure led to differential locations, in
particular Φ*, suggesting the three metrics offer a unique discrimina-
tion (Fig. S4).

Figure 3c demonstrates that the awake state complex, adaptive
dynamics in non-human primate is unlikely to be explained by
dynamics: without bursting (β <0.2: p <0.001); with only bursting
(β >0.8: p < 0.001); or with spatially uncorrelated bursting (σ <N/4:
p < 0.001). Results are consistent when calculated on a separate
monkey with sleep clearly distinguishable from waking and awake

states (Fig. S5). However, the waking and awake states overlap at the
later stages suggesting the animal awakens faster in this recording.

Next, we asked whether the change in model dynamics could
replicate richer arousal states, such as following pharmacologically
induced arousal changes with anaesthesia that result in altered states
of consciousness (dreaming and awake) or unconsciousness in
humans. To assess this, we analysed human EEG recordings under
varying levels of the sedative dexmedetomidine, an α2 adrenergic
receptor agonist that inhibits the LC, which then indirectly decreases
noradrenergic levels in the thalamus and cerebral cortex59 (thus
impairing inter-compartmental coupling in L5PN

39). Using a unique,
serial-awakening experimental paradigm8 wherein patients were peri-
odically woken up from sedation to assess their state of consciousness
—recordings were broadly classified into states of awake, unconscious,
or disconnected consciousness (i.e., patients reported conscious
experience—dreaming—immediately prior to wake up despite being
anaesthetised2).

The three complex adaptive dynamic signatures were robustly
different across the three states of arousal in humans (contrasting
unconsciousness, dreaming, and wake; Fig. 3e, f). Specifically, we
found that the transition from unconsciousness to wake in humans
mirrored the sleep-to-wake transition in macaque—i.e., significant
increases in EEG signal complexity, integration, and integrated-
information (p <0.001 KW; Fig. 3e teal and red). Further, all three
complex, adaptive signatures were heightened in awake, relative to
dreaming (p < 0.001 KW; Fig. 3e red and blue). Interestingly, we found
that dreaming displayed an intermediate Φ* that was significantly
different to wake and unconsciousness (p < 0.001 KW). However,
despite this intermediateΦ*, we found that signal complexity (a proxy
of information content) during dreaming was indistinguishable from
unconsciousness and integration was significantly decreased (i.e.,
segregated) fromboth unconsciousness andwake (p <0.001KW). This
suggests thatΦ* is detecting anemergent balancebetween integration
and information and the complexity overlap in the dreaming and

Fig. 3 | Complex, adaptive dynamics change across arousal states and map to
distinct regions of the model state space. a In macaque EGoG recordings, the
three signatures significantly change across consecutive 20 s epoch states of
arousal from sleeping (teal) to awake (red). b Three-dimensional plot of the three
signatures across each epochwhich ismapped to themodel’s state space (Fig. 2d–f)
using a hybrid swarm minimisation algorithm. c Inverted location of each 20 s
epoch in the model state space following hybrid particle swarm/convex optimisa-
tion minimising the difference between model and empirical complex, adaptive
dynamics where the clouds are five evenly spaced contour lines (2% to 98%) of the
probability density estimate for each state. d Relative percentage error difference

between empirical and model-fitted adaptive signatures. e Across 20 s recordings
of human EEG under the anaesthetic dexmedetomidine, the three signatures sig-
nificantly change across unconsciousness (teal), self-reported dreaming (blue), and
awake arousal states (red). f Three-dimensional plot of the three signatures across
each 20 s EEG recording. g Inversion of human EEG states to model state-space.
h Same as in (d) for EEG recordings. Statistical significance across empirical com-
plex, adaptive dynamics denoted by *p <0.05, **p <0.01, and ***p <0.001
Kruskal–Wallis multiple comparison tests (see Supplementary Table 1 for (a) and
(d) exact p values).
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unconscious groups may reflect a graded transition in the quality of
consciousness (Fig. 3f).

We hypothesised that states of dreaming should explore a dif-
ferent region of the model’s state space. Repeating the particle swarm
minimisation revealed that the three states of consciousness in
humans coincidedwith three unique regions in themodel’s brain-state
space (p <0.001; Fig. 3g). We found that both the human-
anaesthetised and macaque-sleep regimes (Fig. 3g teal) and the
human-awake and macaque-awake regimes substantially overlapped
in the model state space (Fig. 3g red). The dreaming regime was in an
intermediate apical-basal coupled, yet spatiotemporally disconnected,
bursting regime (σ < N

2 and 0.2 < β <0.7) that was not observed in the
primate sleep-to-wake recordings. As dreaming typically occurs
around the rapid-eye-movement stage of sleep, which coincides with
high ACh levels and low levels of NAd1, we hypothesise that this is due
to cortical ACh increasing L5PN bursting with targeted projections of
the nbM (Fig. 1b)10,60. Themultivariate complex, adaptive signatures of
the model state space (i.e., PC & Φ*) closely matched the empirical
measures (all below 15% percentage error; Fig. 3h), whereas the pre-
dicted dreaming KC percentage error was ~25% larger than the
empirically observed (aligning with unconscious regime), which may
reflect either a technical (i.e., EEG coarse-sampling limitation) ormodel
(i.e., non-modelled origin) mismatch.

Bridging macroscale to microscale across arousal states
A distinct advantage of our model is that we can bridge across scales
and relatemacroscale signatures of complex, adaptive dynamics to the
underlying microscale neuronal activity. We explored paradigmatic
examples of the three diverse regimes of unconsciousness (monkey
sleep and human anaesthesia), dreaming (human self-reported), and
awake (monkey and human awake) found above. This approach
exposed qualitatively distinct patterns of spatiotemporally coordi-
nated burst-firing across arousal states. The unconscious regime
activity (β=0:1, σ=N=2) consists of sparse spatiotemporal regular

spikes (Fig. 4a green) with few bursts (Fig. 4a yellow). Figure 4b
demonstrates that the dreaming state (β=0:5, σ =N=4; Fig. 4b) con-
sists of an admixture of spikes and bursts. However, the burst spikes
are transient and varied. Conversely, the awake state (β=0:5, σ =N=4;
Fig. 4c) displays rich spatiotemporal burst sequences (‘cascades’)
propagating across the network. Importantly, it should be emphasised
that each of the three simulations receives identical apical and somatic
drive for these simulations and that differences in activity are emer-
gent from the apical input spatial correlation (σ) and apical-somatic
coupling (β).

To quantify this observation, we identified the presence of con-
nected burst cascades, which were defined as spatiotemporally con-
tiguous sequences of burst-firing neurons between pairs of neurons
that were causally connected by a structural axon (see Methods). We
used the following constraint: for a neuronal burst to belong to an
ongoing cascade, the neuron must be physically connected to a
bursting neuron in the previous timestep. Results were calculated for
temporal windows of 2ms resolution; however, results are consistent
for windows of 0.5 to 5ms. Across all of the regimes, we calculated the
cascade duration (Fig. 4d)—the number of consecutive timesteps a
cascade is active—and the cascade size (Fig. 4e)—the number of spa-
tiotemporally connected neuronal bursts across the cascade’s dura-
tion. Crucially, this analysis is outside the scope of modern empirical
neuroscience, as it is currently impossible to simultaneously track
burst firing in many simultaneously recorded neurons and know with
confidence that any two neurons share a physical synaptic connection.

Tracking these connectedburst cascades across arousal states,we
found that cascades continued longer in the awake state than during
dreaming (p =0.025; Two-sample Kolmogorov–Smirnov goodness-of-
fit hypothesis test between awake and dreaming cascades) and
unconsciousness (p = 10�20), although dreaming cascades lasted sub-
stantially longer than those observed during unconsciousness
(p = 10�9). Interestingly, despite the longer duration, we found that the
awake and dreaming cascades possessed a similar distribution of
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cascade sizes (number of spatiotemporal contiguous bursts; p =0.06,
where the null hypothesis of similar distributions is just accepted at
95% significance). That is to say: dreaming consisted of dense localised
packets of bursting, whereas awake consisted of sparser, more-
spatiotemporally connected bursting cascades that travelled across
the network. Both the awake and dreaming states possessed larger
cascades than unconsciousness (awake vs unconsciousness: p = 10�15 ;
dreaming vs unconsciousness: p = 10�8). Thus, the awake regime dis-
played rich interacting long-lasting cascades, whereas dreaming con-
sists of transient, localised large cascades.

These data suggest that connected burst cascades may support
the richness of awake consciousness experience. As such, we hypo-
thesised that connected burst cascades should facilitate optimal
information processing capabilities. To quantify the information pro-
cessing capacity of the model, we calculated the active information
storage (AIS) and the transfer entropy (TE) of the connected, bursting
coalitions. AIS quantifies the amount of information in a sample froma
neuronal spiking series that is predictable from its past17,18. TE is a
directional measure of the conditional mutual information between
the past of a laterally connected neuronal spiking time-series process
and the present state of a neighbouring neuronal time-series, condi-
tioned on the past of the target (seeMethods). Figure 4f demonstrates

that AIS rapidly increased in magnitude from unconscious to awake
activity (p < 0.05 95% CI) and from dreaming to awake (p <0.05).
Consistently, we found that the TE is the largest in the awake state
(p < 0.05), with a significant increase in TE between awake and
dreaming. That is to say, connected burst cascades in the awake state
significantly maximised TE and AIS relative to dreaming and
unconsciousness.

Differential neuronal dynamics within the awake state via the
ascending arousal system
At any waking moment, neural activity can rapidly reconfigure due to
differential combinations of subcortical drive from the ascending
arousal system. Thus far, we have predicted differential neuronal
information processing and dynamics across broad arousal states;
however,wenextwonderedhowdynamics change at afiner resolution
within the waking/awake regime. To do so, we analysed activity
between awake and waking (i.e., low arousal; Fig. 5a, yellow) and
compared this with larger, more spatiotemporally connected bursting
(Fig. 5a, red) and larger, more spatiotemporally disconnected bursting
(Fig. 5a, blue). The disconnected bursting state could be reached by
targeted anatomical projections such as from the cholinergic nbM
(Fig. 5a, blue arrow). Whereas the connected bursting state could be
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reached by diffuse projections such as from the adrenergic LC (Fig. 5a,
red arrow).

Recent work has begun to interpret neural dynamics through low-
dimensional state trajectories61–63, where the brain state is the instan-
taneous representation of the underlying neural activity. This trajec-
tory then flows atop the underlying dynamic ‘energy’ landscape60.
Through this lens, common changes in activity correspond to ‘low-
energy’ wells in which the trajectory can get trapped, such as an
attractor state. In contrast, surprising changes in activity correspond
to ‘high-energy’ states. Here, the term energy follows a statistical
physics definition that relates energy to the underlying probability
distribution and not the metabolic definition (i.e., the energy used by
the brain to maintain or change neural activity). Thus, a statistically
energetically expensive state (such as increasing firing rates) may be a
metabolically energetically favourable state (and vice-versa). This
interpretation is analogous to physical thermodynamics, where low-
energy cold particles coalesce, and high-energy hot particles diffuse.
Recent fMRI studies have shown that neuromodulators alter the
energy landscape of neural BOLD dynamics, both in resting and task-
evoked states60,64,65. For example, ACh deepens energy wells, and NAd
flattens the energy landscape60. Based on previous theoretical10,66 and
empirical work60, we hypothesised that the modulation of the energy
landscape detected in BOLD might emerge at the neuronal
network scale.

To test the hypothesis that adrenergic and cholinergic neuro-
modulation differentially alter the topography of the energy land-
scape,wecalculated the energy landscape of the L5PNmodel across the
three regimes. Todo this, we first estimated the energy, EΔρ, of changes
in neuronal firing rate, Δρ, defined as EΔρ = � lnPΔρ where PΔρ is the
estimated probability of observing Δρ (see Methods for probability
calculation) of the low-arousal state (EA; Fig. 5b, yellow), adrenergic-
wake (ENAd; Fig. 5b, red), and cholinergic-wake (EACh; Fig. 5b red)
regimes. We found that adrenergic neuromodulation flattened the
energy landscape relative to the low-arousal state (ENAd � EA; Fig. 5c,
red), thus equally facilitating large and small changes in neuronal
spiking67. In contrast, cholinergic neuromodulation relative to the low-
arousal baseline (EACh � EA; Fig. 5c, blue) stabilised activity and
diminished significant changes in firing rate transitions. In this way,
neuromodulation differentially modifies the dynamic transitions of
neural activity within the awake state.

The analysis thus far has investigated ongoing activity; however,
adrenergic and cholinergic neuromodulation has been argued to alter
the response profile of neurons to stimuli12. Based on these studies, we
further hypothesised that cholinergic and adrenergic neuromodula-
tion would differentially augment the network’s receptivity to incom-
ing stimuli in a specificway10: NAd should increase variability7, whereas
ACh should enhance reliability and selectivity68. We calculated the
responseprofiles, F Sð Þ, in the three regions of parameter space across a
broad range of input (S), and we repeated the stimulation across var-
ious trials with different initial conditions (Fig. 5d; see Methods).
Finally, we found that the three transfer functions all followed a power-
law between their baseline and saturation values with the same scaling
exponent δ ∼0:8, suggesting they efficientlymap a large stimuli range
to a smaller output, F Sð Þ∼ Sδ , and that the psychophysical Stevens-law
is invariant to arousal state (i.e., equivalent differences in stimulus lead
to a proportional change in perceived magnitude across arousal69).

The shape of the response profile is indicative of the information
processing of the neural system. From the response profiles, we cal-

culated the dynamic range, ΔS = 10log10
S0:9
S0:1

� �
, which represents the

range of discriminable stimuli70. The range ½S0:1,S0:9� are inverted from
the transfer function F0:1,F0:9

� �
with Fx = F0 + xðF1 � F0Þwhere F1 and

F0 represent the saturation and baseline response, respectively.
Another measure we calculated is the trial-to-trial variability of the
transfer function, ΔF = Varð10log10FðSÞÞ

� �
, representing the intrinsic

reliability (low ΔF) or variability (high ΔF) between a stimulus and
output71. The low-arousal state possessed the largest dynamic range,
ΔS, (Fig. 5e yellow). Increasing NAd led to the largest trial-to-trial
variability,ΔF , (Fig. 5f red),which is consistentwith the theory thatNAd
facilitates flexible behaviour67. In contrast, increasing ACh led to a
reduction in variability (Fig. 5f blue), corresponding to an increase in
stimuli specificity and reliability, consistent with the known enhance-
ment of stimulus detectability and focus with increased cholinergic
tone68.

The previous two findings within the awake state predict that
neuromodulation within the awake state can mediate both neural
responsivity and the low-dimensional dynamical manifold. An analogy
for the interpretation of thesefindings is a constantlymoving ball in an
energy landscape, where the natural movement of the ball corre-
sponds to the neural variability (i.e., black arrows Fig. 5g–i) and the
relative depth of a well corresponds to the likelihood of a given brain
state (Fig. 5g–i). Following adrenergic neuromodulation, the landscape
is flattened—i.e., neural activity can change between previously unat-
tainable states—and the variability of activity is high (Fig. 5g). Con-
versely, following cholinergic neuromodulation the energy landscape
is deepened and neural variability is quenched preventing large and
small fluctuations (Fig. 5h). However, isolated neuromodulatory fluc-
tuations are rare. For example, the LC projects to the nbM exciting it
via beta2 and alpha1 receptors12,72,73. In this case, the synergistic com-
bination of adrenergic-mediated landscape flattening could allow a
new brain-state before a rapid cholinergic-mediated deepening
ensures the desired brain-state is obtained (Fig. 5i). In this way, the
system may be designed to mitigate the excessive and sustained
variability following phasic LC activity.

Multiscale modelling alligns with theoretical sleep modelling
regimes
These results confirm prior theoretical work on arousal that mapped
conceptual relationships between arousal and brain states, albeit
without precise details at the microscopic scale. The empirically con-
strained regimes of our model state space qualitatively reflect a two-
dimensional projection of the three-dimensional Activation (the level
of electrical activation in the brain) /Information (the status of gating
information flow to and from the brain ranging from endogenously to
exogenously driven)/Modulation (themode of information processing
within the brain which is set by the ratio of aminergic to cholinergic
modulation) model (AIM; Fig. 6a, cream). In particular, we observe an
overlap of the diminished consciousness regime—sleep for macaques
(Fig. 6a, teal dark) and anaesthesia for humans (Fig. 6a, teal light)—and
two disparate consciousness states, endogenously driven dreaming
(Fig. 6a, blue) and exogenously driven wake in humans (Fig. 6a, red
light) and macaques (Fig. 6a, red dark). These opposing trajectories of
wake vs. dreaming may be explained by the targeted projections from
the nbM (cortical source of ACh) and thus decreasing σ (vice versa for
NAd from the diffusely projecting LC3,45,46). Thus, the theoretical
manifold introduced by Hobson is qualitatively observed in our
dynamics matched empirical brain-state trajectories atop the compu-
tational model’s parameter space.

As complex, adaptive dynamics change smoothly across the
parameter regime, we wondered how many unique states can be
distinguished using the three signatures. We explored this question
within the model space by clustering the complex adaptive
dynamics signatures using k means clustering. Figure 6b (top-left)
demonstrates the state space was optimally clustered into k = 5
maximally differentiable groups (maximal Davies-Bouldin index for
k = 2 to 20; see Methods). Thus, despite only using 3 signatures we
are able to maximally discriminate 5 macroscale dynamic regimes.
How do these regimes map to arousal states observed empirically?
At k = 5, the clustering solution split the state space into three
horizontal bands split for low, low-intermediate, and high apical-
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basal coupling β and two clusters at intermediate β split vertically
between disconnected/connected bursting σ that differentiates
dreaming and wakeful consciousness (Fig. 6b right). The four low β
state clusters align with the broad empirical states of arousal:
unconsciousness (sleep-monkeys/anaesthesia-humans, blue), wak-
ing (monkeys, yellow), and awake (humans and monkeys, red),
respectively. There is also a clustered state corresponding to
extreme bursting which is likely biologically implausible for exten-
ded periods due to the maintained high-frequency bursting.
Nevertheless, we expect other dynamical signatures would further
fine-grain the model’s parameter space and improve the fitting
procedure for empirical data.

Discussion
Recent studies emphasise that arousal-consciousness relies on the role
of layer 5 pyramidal neurons and their apical-driven capability to
switch from modes of regular spiking to bursting33,74. How the under-
lying coordinated activity of large populations of these neurons can
give rise to the rich dynamics observed at the systems-scale remains
unknown. The combination of multiscale modelling fit to empirical
macroscale recordings allowed us to dissect the role of layer 5 pyr-
amidal neuronal bursting across different arousal regimes at a reso-
lution that is currently empirically impossible (Fig. 2/3). We also
leverageuniquehumandata that reports reduced arousal in the setting
of preserved disconnected consciousness (‘dreaming’) to model the
underlying layer 5 pyramidal neurons changes that subserve changes
in arousal states of consciousness. Our model predicts that awake
brain dynamics possess cascades of spatiotemporally contiguous
bursting in layer 5 pyramidal neurons which are absent in diminished
consciousness and limited in ‘dreaming’ (Fig. 4). These burst cascades
permit optimal information processing (Fig. 5), leading us to hypo-
thesise that these burst cascades may reflect a fundamental unit of
communication that binds information processing across widespread
areas within the cerebral cortex. Finally, this mapping allowed an
empirical verification of the theoretical arousal AIM state-space pro-
posed by Hobson (Fig. 6).

We used a percolation-based approach to track burst cascades
and investigate whether our model recapitulated these temporal sig-
natures. In contrast to previous approaches75, we selectively analysed
bursting neurons and defined a burst cascade as a sequence of burst-
induced burst firing in a set of connected neurons, as it is empirically

difficult to discriminate between regular spikes and bursts using cal-
cium imaging and to know causal anatomical connections. Selecting
the active bursts is empirically justified, as consciously perceived
events have been linked to coordinated bursts29, albeit on a narrower
spatial scale than employed here. This type of analysis is currently
outside the scope of modern in vivo neuroscience, as we do not have
access to high-resolution recordings of both activity and structure in
the same animals. Nevertheless, our combination of theoretical simu-
lation andmatching withmultiscale dynamics predicts that connected
bursting cascades dominate the underlying neuronal dynamics of the
awake state and are absent in diminished states of consciousness and
causally disconnected in endogenously driven states of consciousness
(‘dreaming’). Furthermore, the disconnected bursting cascades may
reflect the illogical nonsequential experience of dreaming and the
smooth change in complex, adaptive dynamics may represent biolo-
gical evidence to support the notion that consciousness is graded and
changing with information theoretic measures20.

Connected burst cascades—a theoretically and empirically
derived fundamental unit of information processing and commu-
nication in the cerebral cortex—represent a parsimonious and unifying
frameworkof Hobson’s AIMmodel of arousal. Themapping to the AIM
state space suggests the apical-basal somatic coupling (β) coincides
with the Activation axis which has been empirically linked to EEG
activation and cortical firing76. In contrast, the spatiotemporally cor-
related apical input (σ) coincides with the Modulation axis, where it
separates disconnected and connected bursting by the ratio of choli-
nergic/monoaminergic neuromodulation where we demonstrate an
empirically verified correspondence with the theoretical arousal
regimes (Figs. 5, 6).

Leveraging multiscale modelling allowed us to build a neuronal
model and link its dynamics to macroscale activity through emer-
gent signatures of complex adaptive dynamics. We believe this will
be a useful technique for blending empirical and computational
work in the future. Nevertheless, the model does not completely
predict all dynamics such as the complexity and integration shift
during self-reported dreaming and we expect that including addi-
tional nuanced components (e.g., NMDA spikes and layer 2/3 dual
compartments77) will further enhance the discriminability of the
model. In addition, our findings suggest that pathological states
correspond to precise deformations of burst dynamics. For exam-
ple, we hypothesise that pathological conditions, such as coma,
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narcolepsy, depression, delirium, and epileptic seizures, will be
discriminable across the model brain-state space78,79. While the cri-
tical benefit of this model is in the prediction of microscale neuronal
dynamics corresponding to macroscale dynamics, we envisage the
concept of matching to global features of complex, adaptive sig-
natures (complexity, integration, and integrated information) will
improve the tracking of stages of arousal63. In particular, tracking
these three signatures would enable a real-time indication of con-
scious state while under anaesthesia.

Our findings highlight various mechanisms of information pro-
cessing that can be mediated by varying levels of thalamic or neuro-
modulatory control. While we found that the awake state maximises
transfer entropy and active information storage relative to dreaming
and unconsciousness, within the awake state, nuanced changes in
arousal can balance opposing information processing requirements.
For example, the low-arousal brain is associated with optimal signal
detection (sensitivity), which may be evolutionarily beneficial during
waking transitions, and the two highly conserved neuromodulatory
axes either sharpen specificity and reliability (ACh) or widen the
variability of the system (NAd). Finally, the structural connectivity of
the locus coeruleus and nucleus basalis of Meynert results in syner-
gistic combinations that can actively overcome adrenergic and choli-
nergic isolated shortfalls.

In conclusion, we fit a biophysically plausible network model of
L5PN to characterise microscopic dynamics across arousal states. In so
doing, we demonstrated that the critical feature of the awake, con-
scious arousal state is the presence of spatiotemporally connected
burst cascades of thick-tufted layer 5 pyramidal neurons that alter the
information processing of the cerebral cortex.

Methods
All research complies with the ethical regulations set forth by the
University of Sydney, New South Wales, Australia. All subjects pro-
vided written consent for each study visit and data were collected in
accordancewith a protocol approved by the institutional reviewboard
at the University of Wisconsin-Madison.

Layer 5 pyramidal neuronal network model
The layer 5 pyramidal model simulations were obtained via numerical
simulation using a phenomenological quadratic integrate-and-fire
neuronal model (Izhikevich neurons)42,43, which is a canonical
reduced form of Hodgkin-Huxley neuronal dynamics80. The model
distils the Hodgkin-Huxley neuronal dynamics to a two-dimensional
system of ordinary-differential equations, with 4 dimensionless para-
meters that can bemodified to recapitulate a rangeof spike-adaptation
dynamics that havebeenobserved experimentally81. In our simulations
we model each neuron with an apical and a basal dendritic compart-
ment. The basal dendritic compartment determines the generation of
the spike wave form and dynamics. The apical dendritic compartment
serves to shift the spike-adaptation of the somatic dynamics between a
mode of regular spikes (no apical intervention) and one of bursting
(apical intervention), dependant on the activity within apical dendritic
compartment.

Basal dendritic compartment
First, we define the dynamics of the basal compartment which gen-
erates the spikes. The basal somatic dendritic compartment was
modelled by the dimensionless membrane equation,

dv
dt

=h 0:04v2 + 5v� u+ I
� 	

, ð1Þ

du
dt

=h a b v� vr
� 	� u

� 	� 	
, ð2Þ

with the after-spike resetting given by

if v≥ 30, then
v cðtÞ

u u +dðtÞ


 �
, ð3Þ

where the differential equations are in a dimensionless form and these
parameters and the constants are reductions to match the spike
dynamics to experimentally observed (see42 for further details) mem-
brane potential, v, (mV) and duration t in milliseconds (ms), vr is the
resting potential, and u is the recovery variable, defined as the differ-
ence of all inward and outward voltage-gated currents (this emulates
the activation (inactivation) of potassium (sodium) ionic currents). I is
the input into the somatic dendrites from all sources and h is the
integration step, which was set at 0.5ms. All differential equations in
this work were solved using the Euler step numerical integration
method, and all analysis was computed on spike-times rounded to the
nearest half-millisecond82–84.

The parameter a represents the time constant of the spike adap-
tation current and is set as a=0:02. The parameter b describes the
sensitivity of the adaptation current to subthreshold fluctuations of
the membrane potential (v) and is set as b=0:2. The parameters c and
d represent the after-spike reset of v and u, controlling the voltage
reset to model the effect of fast high-threshold K+ conductances and
the slowhigh-thresholdNa+ andK+ conductances activated during the
spike similarly modulating spike-adaptation as a, respectively. The
parameters c and d are time-varying and are modified by the apical
compartment, as detailed below.

In this paper, we studied a highly recurrent network of L5PN,
consisting of N2 = 70× 70=4900 neurons with toroidal grid topology
(10 μm spacing and periodic boundary conditions)85. We also simu-
lated dynamics on 50 × 50 and 200 × 200 grid sizes to ensure spiking
dynamics were not affected by finite-size simulations. Afferent con-
nections are made with adjacent neurons falling within a somatic
dendritic tree of radius of 200 μm85. Total synaptic currents, I, into the
somatic dendrites is prescribed by

I = Iext + s, ð4Þ

where Iext represents the input onto the L5PN from lower-cortical feed-
forward and subcortical structures. This input was modelled as white
noise (μIext

=0 mV, σIext
= 5 mV) to induce spontaneous activity. For a

given neuron i, si represents the synaptic input from all afferent
neurons, while additionally incorporating inhibitory and excitatory
neurons. The total synaptic current into a neuron, i, is then given by:

siðtÞ=
X
j

X
k

wij δ t � tkj
� �

, ð5Þ

where δ is the Kronecker delta function and spike post-synaptic
potentials at time tk from all afferent neurons, j, are scaled by a
synaptic coupling weight, wij , and summed. The synaptic coupling
strength follows a homogenous difference of Gaussians or ‘Mexican-
hat’ function44 to model the local excitation and lateral inhibition
effects44, given by

wij =
0 if dij >dmax or i= j

CEe
�

d2
ij

dE +CIe
�

d2
ij

dI if 0 <dij <dmax

8<
:

9=
; ð6Þ

where dij is the Euclidean distance between neuron i and j, CE and CI

are the excitatory and inhibitory coupling constants, and dE and dI are
the excitatory and inhibitory coupling ranges, respectively. The cou-
pling parameters were set in our model such that the total excitation
and inhibition into the network was poised on the border between
“dying” and “run-away” activity, which ensures that the excitatory and
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inhibitory strengths are consistent with spike rates of spontaneous
cortical activity in humans (i.e., ~2 Hz)86, furthermore they were nor-
malised to the model size to ensure network rescaling preserved
approximate spiking dynamics. The coupling parameters utilised in
our simulations were CE = 180=

ffiffiffiffi
N
p

, CI =CE=2, dE = 1:2
ffiffiffiffi
N
p

, dI =2:5
ffiffiffiffi
N
p

,
dmax = 2:5

ffiffiffiffi
N
p

. Finally, the parameters used in the model are set such
that the network is balanced, defined as

P
wij =0, such that the net

synaptic coupling into each neuron is zero.

Apical dendritic compartment
The basal dendritic compartment of each neuron was coupled to its
corresponding apical dendritic compartment, whose increased activ-
ity could transition the basal dendritic compartment from a regular
spiking mode to a burst spiking mode87–91.

The spatial correlation of apical input (σ)
The apical compartment input, αiðtÞ, into each neuron was generated
by convolving independent white-noise drive, ϵi,j, with a spatial

Gaussian kernel GσðdijÞ= 1
2πσ2 e

�jdij j
2

2σ2 , with spatial decay σ, which ranges
from σ =0 (i.e., independent white-noise into each neuron) or σ =N
(i.e., apical compartment input is strongly spatially correlated). The
total apical compartment drive into a neuron, i, is then given by

αi tð Þ=Gσ dij

� �
*ϵi,j : ð7Þ

Apical-basal electrotonic separation (β)
The apical input can transition each L5PN from a regular spiking mode
to a burst spiking mode, depending on whether the apical input over
the previous 25ms exceeds the electrotonic separation controlled by
the coupling between the apical andbasal dendritic compartments (β).
This parameter modifies the neuronal spiking variables ciðtÞ and diðtÞ
following

ci tð Þ= � 65 + 10H
Xt

t0 = t�25
αiðt0Þ � IhðβÞ

 !
, ð8Þ

di tð Þ=8� 4H
Xt

t0 = t�25
αi t

0ð Þ � Ih βð Þ
 !

, ð9Þ

with H as the Heaviside step-function and Ih is the electrotonic leak-
current, which is a function of the apical-basal coupling β. This results
in two conditions: if the apical activity does not exceed the
electrotonic separation, then c= � 65 and d =8, and the neuron
recapitulates regular spiking dynamics, such that when driven with
constant input the neuron responds with a short inter-spike interval
(ISI) which gradually increases with input amplitude; in contrast, if the
apical current exceeds the HCN channel mediated leakage current
then, c= � 55 andd =4,which recapitulates intrinsically bursting spike
dynamics, such that when driven with constant input, the neuron
responds with bursting, followed by repetitive short ISI spikes92. The
two regimes of spiking dynamics can be observed in Fig. 1b in themain
text. The parameters were chosen based on original research that fit
the spike profiles of regular spiking and bursting L5PN

42,81. Thus, a
simulated action-potential can be defined as either a burst or a regular
spike depending on the c and d parameters at the time of activation.

Exploring the model state-space according to β and σ
The main impetus of this work was to explore the biophysical phe-
nomenon of coordinated bursting on emergent brain-state dynamics.
This orients the exploration of our model to two key parameters cor-
responding to apical-basal coupling, β and reciprocally connected
bursting, σ. In the manuscript, we present results for an HCN channel

mediated leakage current ranging from Ihðβ=0Þ= � 3 to Ihðβ= 1Þ= 3 in
20 linear steps, and σ ranging from σ = 1 (disconnected bursting) to
σ =N (connected bursting) in 42 linear steps. Thus, we ran
40×42= 1,680 simulations, with identical temporal drive and apical
input, prior to Gaussian convolution. We ran each simulation for 35 s,
in time-steps of Δt =0:5 ms and discarded the initial 15 s of simulation
so as to avoid transient dynamics induced by initial conditions.

Coarse-sampled neural activity
While the exact relationship between local-field potentials (for elec-
trocorticography (ECoG) and EEG signals) and underlying neural
spiking activity is still debated, signals from thesemodalities represent
macroscale summations of all ionic currents93, including action
potentials94. Given, L5PN are numerous, large and geometrically
aligned, a crucial feature for constructive superposition of extra-
cellular field potentials, and furthermore, they undergo metabolically
‘expensive’ bursts which are believed to be a primary contributor to
these cortical signals24,95–98. For these reasons, field potentials are
believed to be dominated by L5PN activity99–102. We can thus use these
relationships to create a mapping between spiking activity and ECoG/
EEG. This mapping corresponds with the findings of103–106, who con-
cluded that the population firing rates are largely responsible for
ECoG/EEG signals. Furthermore, for spectral analysis, the data used in
our analysis preserves the spiking spectral properties24,55.

To obtain a spatially coarse population measure from our simu-
lations that is comparable to these empirical recordings, we utilise a
standard approach of pooling the neuronal spiking activity107–109. We
coarse-sample at an intermediate spatial-scale pooling into 100 sub-
populations of 49 perfectly nonoverlapping and spatially localised
neurons, subsampling across a 10× 10 grid. One alternative approach
would be to calculate the average membrane potential110–114; however,
as the two experimental measures correlate stronger with spiking
activity, we opted for the former method. Another alternative
approach, aligning with empirical conditions would be to sample
spiking activity with overlap across neighbouring regions53. To do this,
we subsampled spiking activity spatially pooled by convolution with a
2d gaussianwith σ =3 neurons (i.e., 40μm)as if recordedusing a 10×10
multielectrode array. Nevertheless, despite this significantly over-
lapping coarse-sampling (i.e., significant spurious correlations) the
multivariate complex, adaptive signatures are only slightly affected
(PC & Φ*; r > 0.9 perfectly sampled/overlapping sampling) and the
univariate (KC) is unaffected (Fig. S1).

Experimental methods
Statistics and reproducibility. In this paper, we utilise twodatasets for
comparison to our model outputs: cortical ECoG data recorded from
twomacaquemonkeys (bothmale) transitioning from asleep to awake
(available from the NeuroTycho public repository; http://www.
neurotycho.org) and human EEG data (n = 20, 5 female) across vary-
ing states of consciousness (unconsciousness, consciousness, and
dreaming)8. No statistical method was used to predetermine sample
size and no data were excluded from the analyses. In the following
sections, wedescribe the justification behind comparing themodelling
data and the pre-processing applied to each of these datasets.

Macaque ECoG recordings. We analysed freely available ECoG data
from the neurotycho dataset of macaque monkeys (Macaca fuscata)
George (Fig. 2a) and Chibi (Fig. S5) and undergoing a sleep experi-
ment. All experimental and surgical procedures were performed in
accordance with the experimental protocols approved by the RIKEN
ethics committee. In a single recording session, data was captured
while the monkeys transitioned from sleep to wake. The full protocol
and definition of sleep conditions can be found in ref. 9. Here, we
briefly describe the aspects of the protocols that are relevant for our
analysis.
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The activity was recorded on an array of ECoG electrodes
embedded in an insulating silicone sheet. The surface of the sheet was
dimpled to expose the surface of ECoG electrodes with a diameter of
1mm. The electrodes were made of platinum discs, and the inter-
electrode distance was 5mm. The array consisted of 128 electrodes
implanted in the subdural space covering the left hemisphere over the
frontal, parietal, temporal, and occipital lobes. The experimental and
surgical procedure was performed in accordance with the protocols
approved by the RIKEN ethics committee. The electrode recorded at a
sampling rate of 1 kHz9.

To remove line noise and reduce artefacts in the ECoG data, we
computed bipolar re-referenced signals between two neighbouring
electrodes, resulting in a reduction of the 128 electrodes to 64 inde-
pendent channels. A second-order Butterworth notch filter was
applied at 50Hz to remove line-noise. We analysed the ECoG data
recorded from four experiments in which recordings were made
continuously while the macaques (n = 2) were asleep, waking up, and
awake with eyes closed. We divided each of these recordings into non-
overlapping epochs of 20 s to ensure consistency with the model
simulations.

Human EEG recordings. Subjects (n = 20, 5 female) were enroled in
theUNderstandingConsciousnessConnectedness and Intra-Operative
Unresponsiveness Study (UN-ConsCIOUS, NCT03284307)8. Partici-
pants were healthy volunteers between 18 and 40 years old without
prior contraindications to anaesthetics. Sex and/or gender was not
considered in the study design. All subjects providedwritten consent
for each study visit and data were collected in accordance with a
protocol approved by the institutional review board at the University
of Wisconsin-Madison. Participants were compensated $200 for
taking part in a sedation study. Anaesthesia was administered under
the supervision of an anaesthetist to achieve a series of stable drug-
dose plateaus. For Dexmedetomidine, a rapid infusion of 3.0μg kg−1

h−1 was initially administered over a 10min period followed by a
0.5μg kg−1 h−1 maintenance infusion to achieve the first drug step.
The second step was similarly achieved by a 10min infusion of
3.0μg kg−1 h−1 followed by a 1.5μg kg−1 h−1 maintenance infusion.
Subjects were allowed to rest with their eyes closed for 2–10min at a
time. Each rest period was concluded by a researcher calling the
participant’s name and initiating a brief structured interview con-
sisting of questions designed to assess if the participant had been
having a conscious experience directly before the namecall and if the
experience was connected to the environment through the senses.
Participant answers were evaluated by two members of the research
team to code each wake report as consciousness, disconnected
consciousness (conscious experience but no awareness of the
environment i.e., ‘dreaming’), or unconsciousness (complete lack of
experience)8,115. If the subjects were not rousable, they were not
presumed unconscious and the attempted wake-up was excluded
from the analysis.

High-density EEG data were collected using a NA300 EGI system
with 256-channel gel caps. Electrodes were manually prepared with
application of electrolyte gel to achieve electrode impedances <50 kΩ.
Data were recorded using EGI Net Station Acquisition 5.4 software
(Eugene, OR, USA). Data were filtered between 0.1 and 55Hz. Filtered
data were then visually inspected for noisy channels and noisy epochs,
which were removed. Independent component analysis was then
computed using the InfoMax algorithm, and components dominated
by eye movements or muscle artefacts were rejected. After these
cleaning steps, data were average referenced, and to avoid volume
conduction and reduce point spread, the signal was transformed to
current source density by using spatial Laplacian derivatives. Con-
sistent with the model and macaque analysis we analysed the pre-
ceding 20 s epochs before the wake report was segmented out for
analysis.

Analytic methods
We now outline the analysis methods applied to the simulated and
experimental data.

Spike statistics
Inter-spike interval. Inter-spike intervals (ISI), defined as the time
interval between successive spikes in a spike train, were calculated for
each neuron. Given J spikes let ti be the occurrence time of the ith
spike. The ISI sequence is:

ISI = ft2 � t1,t3 � t2, . . . ,tJ � tJ�1g: ð10Þ

Spike count. To calculate spike-counts, we followed the approach
described by47. First, time was divided into dt = 1ms bins, and a binary
spike train, spiðtÞ was created for each neuron, i, equal to 1 if there was
a spike in t,ðt +dtÞ and0otherwise. The spike-count, ni t;Tð Þ ofwindow
size T is defined as the number of spikes in (t,t +T), which can be
written as a convolution between the spike train and a square kernel,
KT , of length T ,

ni t;Tð Þ=KT *spi tð Þ=
X
t0

KT t0 � tð Þ*spi t
0ð Þ ð11Þ

where T = 50 ms consistent with47. We used a box with amplitude 1=T
in (t,t +T) and zero otherwise to ensure ni has units of spk/s.

Fano-factor. We calculated themean-normalised spike-count variance
or Fano-factor, FFi, for each neuron116, i, calculated as

FFi =
Var niðtÞ

� 	
niðtÞ
� � , ð12Þ

where Var ni tð Þ
� 	

is the variance of the neurons spike-count,

Var ni tð Þ
� 	

= σ2
ni tð Þ = ni tð Þ � ni tð Þ

� �� 	2D E
: ð13Þ

If spike times are Poisson-distributed, then FF = 1 as the variance
of a Poissonprocess is equal to itsmean. Any deviation fromunity thus
implies a divergence fromPoisson-like activity, divergencebelowunity
suggests regularity while divergence greater than unity indicates an
increase in variability, relative to a Poisson process.

Spike-count correlation. The spike-count correlations between neu-
rons i and j were calculated using the standard correlation coefficient,
rsc, calculated as

rsc =
Cov

�
ni tð Þ,nj tð Þ

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ni tð Þ

� 	
Var

�
nj tð Þ

	q , ð14Þ

where Covðni tð Þ,nj tð ÞÞ is the covariance between the spike-counts of
the two neurons:

Cov
�
ni tð Þ,nj tð Þ

	
=
D

ni tð Þ � ni tð Þ
� �� 	�

nj tð Þ �
�
nj tð Þ

�	E
: ð15Þ

Signatures of complex, adaptive dynamics. As detailed above, the
brain-state signatures were calculated on either the pooled spiking
activity of the population, for the Kolmogorov complexity, or between
100 pooled sub-populations equally spaced from the network each
consisting of 49 neurons. The pooled spike count, nðt,TÞ, was calcu-
lated as above after convolving the population spike vector dt = 1 ms
with a Gaussian T = 200 ms.

Kolmogorov complexity. We calculated the complexity of the
signal using the Kolmogorov complexity, KC, which is a measure of
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the information content of a signal. This can be conceptualised as
how compressible the signal is without loss of information content.
Intuitively, a complex (random) signal is difficult to compress, since
sequences are mostly unique, whereas a simple/repeating signal is
easily compressible since common phrases in the signal can be
encoded in manner cheaper than the complete phrase by assigning
them an identifier22,51. To compute this measure, the population
signal was binarised into 1, if greater than the mean and 0 otherwise.
The binary sequence was then scanned from left to right and a
complexity counter, cðmÞ, was increased whenever a new sub-
sequence of consecutive characters was detected. KC was then cal-
culated as:

KC =
c mð Þ

m=logαm
, ð16Þ

where the complexity counter is normalised by the number of words,
m, and the number of ‘characters’ in the language,α, in this case,α =2 a
binary language. These measures have been shown to increase with
waking/consciousness and decrease with sleeping/anaesthesia117,118.
The population signal is calculated at the resolution of the relevant
signal (i.e., dt = 1ms model, monkey ECoG, and human EEG).

Participation Coefficient. The time series of activity (be that coarse-
sampled population spiking activity, bipolar re-referenced ECoG, or
surface Laplacian EEG), n, were used to create a weighted, signed, and
un-thresholded functional connectivity matrix (using the region-to-
region Pearson’s correlation as a measure of functional connection
strength), which we then examined for a modular network119. The
algorithm optimises a multilayer modularity quality function, Q, using
a weighted- and signed- version of the Louvain modularity algorithm
from the Brain Connectivity Toolbox120–122 to group time-series signals
(nodes) to communities (groups of nodes) until themaximumpossible
score of Q has been obtained. The modularity estimates for a given
network is, therefore, a quantification of the extent to which the net-
work may be subdivided into communities with stronger within-
community than between-community connections.

QT =
1
v+

X
ij

w+
ij � u+

ij

� �
δMiMj

� 1
v+ + v�

X
ij

w�ij � u�ij
� �

δMiMj ð17Þ

where v is the total weight of the network (sum of all negative and
positive connections), wij is the weighted and signed functional con-
nection between signals i and j, uij is the strength of a connection
divided by the total weight of the network, and δMiMj

is set to 1 when
regions are in the same community and 0 otherwise. ‘+’ and ‘–’

superscripts denote all positive and negative connections, respec-
tively. Since the community detection algorithm isnondeterministic123,
1,000 iterations of the network partitions were estimated for an
intermediate value of the model (β =0:5; σ =0:5) while sweeping the
structural resolution, γ, parameter between 0.5–2.0 (γ tunes the
strength of the null model: larger values identify smaller communities
and v.v.). We tested the stability of the resultant partitions by calcu-
lating the normalised mutual information between the community
assignments across iterations and found that γ = 1.05 provided the
most stable community assignments. Using this setting, the Louvain
algorithm was then applied to correlation matrices from across the
parameter space and empirical recordings for consistency.

The participation coefficient quantifies the extent towhich a node
connects across all detected communities. This measure has pre-
viously been used to characterize diversely connected hub neurons
within cortical brain networks, e.g., see124. Here, the participation
coefficient, PC, was calculated for each node of our networks, where
κisT is the strength of the positive connections of node i to node in

community s, and κiT is the sum of strengths of all positive connec-
tions of node i. The community affiliation was determined following a
consensus partition was created across the whole range using the
‘consensus_und.m’ script from the Brain Connectivity Toolbox for
consistency. Briefly, this approach involves calculating the mutual
information between community affiliation vectors (i.e., the ‘agree-
ment’matrix), and then identifying the most stable summary of these
vectors before applying the Louvain algorithm to the matrix (with
γ = 1.05). This resulted in a single consensus community affiliation
vector, which we used for the subsequent estimate of the participation
coefficient. The participation coefficient of a node is close to 1 if its
connections are uniformly distributed among all the communities and
0 if all of its links are within its community:

PCi = 1�
XnM

s = 1

κisT

κiT

 �2

: ð18Þ

We report the summary mean participation coefficient, PCi

� �
of

the network in the paper averaged across 100 iterations of the Louvain
algorithm (due to the algorithms stochasticity). This measure has
previously been linked to both intransitive21 and transitive125 signatures
of consciousness.

Integrated Information. Integrated information, Φ, is defined theo-
retically as the amount of information a system generates as a whole,
above and beyond the amount of information its parts independently
generate1. Due to the complexity of the system and a large number of
simultaneous activities analysed, the calculation of integrated infor-
mation is typically considered to be computationally intractable. Thus,
we utilised an approximated measure, Φ*, calculated through mis-
matcheddecodingdeveloped from information theory, see ref. 19 for a
full derivation of the method. Furthermore, we were still required to
decrease the variables of the system and thus coarse-sampled the
spatially dependent activity into 100 non-overlapping subsets, sam-
pled following spatial dependence as if recorded using a 10 × 10 mul-
tielectrode array, whereas all referenced electrodes were utilised for
the ECoG and EEG data. Briefly, Φ* = I � I*, where I is the mutual
information that the current state of the whole system has about its
past at a time-lag of τ = 15 ms, and I*, where disconnected I, is the
mismatched information that cannot be partitioned into independent
parts. For our analysis, we considered the most straightforward par-
tition scheme, the atomic partition, in whichΦ* is calculated assuming
each channel is independent. In this sense, the ‘atomic partition’ gives
the upper-bound of Φ*, because it quantifies the amount of informa-
tion loss ignoring higher-order interactions for decoding. Finally,
within our model τ = 15 ms was selected as it resulted in the largestΦ*,
across τ = 1 to 500 ms.

Information theoretic measures. Active Information Storage and
Transfer Entropy are calculated across randomly samplings from the
neuronal network (1% random sampling repeated 100 times), using the
JIDT software package64 and a discrete variable estimator with a
timeseries history length, 1≤ k ≤ 10, selected in order tomaximise bias-
corrected active information storage93,94.

Low-dimensional energy landscapes. Following methodology from
previous work60, we formulate an energy landscape by first computing
a one-dimensional measure of trajectories on our neuronal firing rate
activity, namely the mean-squared-displacement, which is defined as

MSDt,τ = nt + τ � nt

�� ��2D E
k

ð19Þ

averaged over all k neurons sampled from the network. The prob-
ability of observing a given MSD across the entire timeseries was then
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calculated using a Gaussian kernel density estimation

P MSD,tð Þ= 1
4N

Xn
i = 1

K
MSDt,i

4

 �
ð20Þ

where K uð Þ= 1
2
ffiffiffi
π
p e�

1
2u

2
. As is typical in statistical mechanics the energy

of a given state, Eσ , and its probability are related by P σð Þ= 1
Z e
�Eσ

T

where Z is the normalisation function and T is the scaling factor
equivalent to temperature in thermodynamics. In our analysisP
σ
Pσ = 1! Z = 1 by construction and we can set T = 1 for the observed

data. Thus, the energy of eachMSD at a given time-lag t, E is then equal
to the natural logarithm of the inverse probability, PðMSD,tÞ of its
occurrence

E = ln
1

PðMSD,tÞ

 �
: ð21Þ

Dynamic range. To probe the information processing properties of
model given stimuli, we calculated the dynamic range, Δs, from the
range of discernible responses to the range of stimulatory input. We
calculated the response function, F , as F =

PT
t = 1nðtÞ, that is the spiking

activity generated over T , where T = 10 s (results are robust for varying
T = 100ms to T = 2 s), in response to a transient stimulus (T=2 s) of
strength S, ranging from S= 10�5 to S= 100:5 ms�1, where the stimulus
is modelled as afferent spikes generated as a Poisson process to each
node at a stimulus rate S. Finally, F was averaged across 20 trials for
each stimulus intensity. After calculating the average elicited response,
F, the dynamic range, Δ= 10log10

S0:9
S0:1

, was calculated as the stimulus
range (in dB) where variations in S can be robustly coded by variations
in F, after discarding elicited responses that are too small to
distinguish from baseline, F0, or network saturation, Fmax

70. The sti-
mulus range [S0:1, S0:9] is calculated from the elicited response range
[F0:1, F0:9], where Fx = F0 + xðFmax � F0Þ which is the standard range
reported70,71,126,127.

Particle-swarm optimisation algorithm. The optimal fitting between
the empirical and model state space σ,βð Þ complex, adaptive sig-
natures ðKC,PC,Φ*Þ, was calculated by minimising the following func-
tion for each recording epoch

Fðσ,βÞ=
X
x

Xmdlðσ,βÞ � Xemp

Xemp
, ð22Þ

where x is the set of complex, adaptive signatures utilised for the
fitting and the function is normalised by the empirical measure to
allow comparison between measures with different ranges. All results
in the manuscript use x 2 ðKC,PC,Φ*Þ and Supplementary Figure 3
includes the power spectrum slope (estimated using a fast-Fourier
transform between 2-50Hz), and Supplementary Figure 4 looks at a
subset of the signatures. The minimisation function first releases a
swarm of 100 particles randomly bound within the model ðσ,βÞ state-
space (particleswarm function MATLAB) and then performs a local
interior-point nonlinear convex optimisation (fmincon function
MATLAB).

Connected burst cascades. To quantify coordinated spatiotemporal
burst activations we detected these patterns based on their spatial and
temporal contiguity, with each of them being referred to as a
cascade128. Specifically, for successive timesteps, neuronal action
potentials defined as bursts (c= −55, and d =4) are clustered within a
radius rS, and a cascade is defined as a spatiotemporally contiguous set
of bursts within a radius rT between successive timesteps. We present
results for rS = 10ffi dE , i.e., bursting neurons are causally excitatory
connected and rT = 2 ms, i.e., the bursts are binned into windows of

2ms. The results are robust across rS = 5 to 30, and rT =0:5 to 5 ms;
however, larger values decrease thenumber of detectable patterns and
smaller values result in unitary cascades. This method allows multiple
simultaneous cascades to be detected. A cascade is quantified by two
quantities: size, S, the number of bursts within a cascade and duration,
T, the number of successive timesteps a cascade is active.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study are provided in the Source Data file.
The macaque ECoG data9 can be obtained from (www.www.
neurotycho.org/sleep-task). The human EEG data8 can be obtained
following approval by the institutional review board at the University
of Wisconsin-Madison. Source data are provided with this paper.

Code availability
The model and analyses that support the findings of this study are
available on GitHub (https://github.com/Bmunn/Layer5_Arousal).
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