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Perspective

Functional neuroimaging as a catalyst for 
integrated neuroscience

Emily S. Finn1 ✉, Russell A. Poldrack2 ✉ & James M. Shine3 ✉

Functional magnetic resonance imaging (fMRI) enables non-invasive access to the 
awake, behaving human brain. By tracking whole-brain signals across a diverse range 
of cognitive and behavioural states or mapping differences associated with specific 
traits or clinical conditions, fMRI has advanced our understanding of brain function 
and its links to both normal and atypical behaviour. Despite this headway, progress  
in human cognitive neuroscience that uses fMRI has been relatively isolated from 
rapid advances in other subdomains of neuroscience, which themselves are also 
somewhat siloed from one another. In this Perspective, we argue that fMRI is well- 
placed to integrate the diverse subfields of systems, cognitive, computational and 
clinical neuroscience. We first summarize the strengths and weaknesses of fMRI as  
an imaging tool, then highlight examples of studies that have successfully used fMRI 
in each subdomain of neuroscience. We then provide a roadmap for the future 
advances that will be needed to realize this integrative vision. In this way, we hope to 
demonstrate how fMRI can help usher in a new era of interdisciplinary coherence in 
neuroscience.

Interest and investment in brain science have expanded rapidly in 
recent decades, rewarding us with exciting discoveries about how 
nervous systems orchestrate their command over complex adap-
tive behaviour. Progress is slowed, however, by the fact that many 
subdomains within neuroscience are fundamentally siloed from one 
another. There are understandable reasons for this: neuro science 
research is conducted in diverse organisms, from humans to rodents 
to invertebrates; on scales ranging from nanometres (for exam-
ple, single molecules) to metres (for example, socially interacting 
humans); using measurement techniques that range from detect-
ing gene expression in single cells to recording electrical activity in 
groups of neurons and observing complex behaviour (for example, 
human speech).

This wide range of approaches raises conceptual and empirical bar-
riers that make it inherently difficult to integrate insights or advances 
across subfields. Yet, ultimately, we will need to bridge across the 
domains of neuroscience to fully understand how the brain works, 
as well as to identify and treat its many distinct disorders and syn-
dromes. Without these links, we are tacitly accepting our inability to 
translate insights from one field (for example, circuit mechanisms 
for synaptic plasticity following brain stimulation1,2) into another (for 
example, understanding how and where to stimulate the brain of an  
individual with a particular disorder in order to confer maximal clinical 
benefit3).

In this Perspective, we suggest that the technique of fMRI is 
well-placed to act as an integrative bridge to connect between differ-
ent subfields of neuroscience (Fig. 1). fMRI has a number of enviable 
features, such as non-invasive access to both spatial and tempo-
ral information at the whole-brain level4, the ability to interrogate 
human-level cognitive, emotional and motoric capacities5 as well as 

to acquire commensurate data across species, and a strong ground-
ing in open science practices that are driving heightened validity and 
reproducibility6,7. Along with these strengths, fMRI also has notable 
weaknesses, including the fact that the blood oxygen level-dependent 
(BOLD) signal is an indirect measure of neural activity8. Crucially, these 
limitations align with prominent strengths of techniques used in other 
fields, such as the ability to causally drive neural dynamics in ways 
that reduce ambiguity about the source of signals being measured8. 
If the unique strengths of fMRI can be leveraged while finding ways 
to compensate for its weaknesses, network science shows that better 
integration across a network (that is, increasing the density or strength 
of connector hubs9–11) will help to catalyse robust progress in the field 
of neuroscience in general.

Strengths and weaknesses of fMRI
Unlike structural MRI, which provides detailed anatomical images of 
the brain, fMRI detects changes in blood flow dynamics that occur 
while the brain is active12. The most common contrast mechanism, 
known as the BOLD signal, is based on the principle that there is an 
increased delivery of oxygenated blood supply to regions of height-
ened neuronal activity that can be detected using MRI. fMRI is very 
safe in that it is non-invasive and does not require the use of ionizing 
radiation. Although fMRI is perhaps most strongly associated with 
cognitive neuroscience—indeed, one of its core strengths is to pro-
vide a window into brain function as people perform specific tasks 
involving, for example, perception, memory and decision making—its 
applications are not limited to the cognitive domain. It has also made 
key contributions to systems, computational and clinical neurosci-
ence, as discussed below.
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One key feature of fMRI that makes it well-positioned to serve as a 
bridge across subfields is that it can be performed in humans as well as 
all mammalian model systems (for example, rodents and non-human 
primates), yielding commensurate data that open a direct translational 
route between species. Another major advantage is its whole-brain 
access: it can acquire a full three-dimensional brain volume at each 
readout, with reasonable temporal resolution (on the order of 1 Hz or 
faster; Box 1 and Fig. 2) and with the highest spatial resolution of any 
non-invasive imaging technique (on the order of 1 mm or less; Box 1). 
Although more invasive techniques are preferable for most applica-
tions in model systems, even the state of the art in these techniques 
cannot yet match this whole-brain, simultaneous, depth-agnostic 
feature of fMRI—for example, in mice, wide-field calcium imaging is 
typically limited to relatively superficial subsets of the cortical sur-
face, with no ability to simultaneously image subcortical structures. 
Furthermore, the same safe and non-invasive nature that makes fMRI 
suitable for humans also makes it more suitable for certain applications 
in model systems, such as long-term longitudinal designs. Whereas 
more invasive techniques, such as direct electrophysiological record-
ings and/or calcium imaging, suffer from problems with localizing 
the same neurons or neuronal populations across sessions, or even 
with repeated acquisitions damaging the health of the tissue, fMRI 
makes it safe and easy to acquire an arbitrary number of repeated meas-
ures in the same subject (whether human or animal) and accurately 
cross-register these measurements with one another. Thus, although 
fMRI requires substantial technical expertise to acquire and analyse 
the data, it provides unique benefits that are difficult to obtain with 
other imaging techniques.

Other imaging approaches used in humans offer complementary 
strengths to those of fMRI; however, each of these has its own weak-
nesses that we argue make it less suitable to act as an interdisciplinary 

bridge. Electroencephalography (EEG) provides a more direct measure 
of electrical activity with millisecond temporal resolution, but the 
spatial resolution is poor and largely limited to the cortical surface. 
This impairs our ability to draw links with systems neuroscience, since 
many key structures are small and/or subcortical (for example, the 
hippocampus). Collecting surface EEG in small animals is empirically 
challenging, making it a poor choice for achieving correspondence in 
cross-species measurements. Magnetoencephalograhy (MEG) provides 
excellent temporal resolution and spatial resolution that is better than 
EEG (though still poor in comparison to fMRI). However, MEG requires 
specialized equipment that is less widely available than MRI machines, 
and is also difficult or impossible to perform in most smaller model 
organisms. Positron emission tomography (PET) offers direct links 
to molecular and cellular neuroscience, but both the temporal and 
spatial resolution are substantially poorer than fMRI and it is inva-
sive, prohibitively expensive and limited in its availability, making it 
challenging to scale. It is also inappropriate for some populations (for 
example, children or pregnant women) owing to exposure to ionizing 
radiation. Intracranial EEG, in which electrodes are placed directly on 
or inside neural tissue, comes closest to a ‘gold standard’ for measur-
ing brain activity, but its availability in humans is extremely limited (to 
neurosurgical patients). Furthermore, it does not offer whole-brain 
coverage, and electrode placement is determined by clinical rather 
than research goals.

Despite its strengths over other techniques available in humans, fMRI 
has several weaknesses worth noting (Fig. 2). First, the BOLD signal 
is an indirect probe of neuronal activity, tracking instead a complex 
relationship between spiking activity, local field potentials, glial cell 
function and vascular smooth muscle cells13–16. These complex relation-
ships can make it challenging to infer the likely neuronal correlates of 
localized BOLD changes, particularly as the mechanisms supporting 
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Fig. 1 | fMRI as an integrative catalyst to dissolve modular boundaries in  
the existing neuroscience network.  a, At present, most subdomains in 
neuroscience are highly insular, with few studies linking across subdomains;  
a co-citation network of papers published in neuroscience would appear 
topologically segregated. We foresee an opportunity for fMRI studies to help 
dissolve these subdomain boundaries, which would integrate the field of 
neuroscience in ways that will catalyse the formation of new subfields and 

novel insights into how the brain works. Note that the networks depicted in this 
figure are entirely conceptual. b, Illustrative example of how, by combining 
studies in each subdomain with fMRI, a richer perspective can emerge linking 
across scales and species. c, The benefit of integrating across subfields is  
that there will be stronger links between precise neural mechanisms and 
idiosyncratic clinical problems, which will be enriched with computational and 
cognitive depth (and may also be important targets of inquiry in their own right).
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the BOLD response can vary across regions. The BOLD response is also 
relatively slow, and the spatial resolution of the neurovasculature can 
also make it difficult to resolve small structures, as well as distinct cell 
types or sub-cellular processes. Finally, cross-species comparisons 
can be challenging owing to the fact that animals typically require 
anaesthesia to undergo MRI scanning.

Despite these limitations, there is reason to be optimistic, as novel 
imaging sequences are continuing to improve spatial signal to noise17. 
Furthermore, even invasive imaging techniques considered to capture 
neuronal activity more directly cannot fully overcome these complex 
transfer functions: for example, wide-field calcium imaging, arguably 
fMRI’s main competitor technique for invasive studies in animal models,  
also requires specialized deconvolution algorithms to separate signal 
from background18 and link the recovered signal back to the inferred 
spike-driven events that give rise to it, and just like with the BOLD sig-
nal, the choice of algorithm can substantially impact results19. The 
second main weakness of fMRI is its relatively poor temporal reso-
lution compared to electrophysiological imaging techniques (that 
is, EEG and MEG). However, especially for cross-species applications, 
we believe that accurate spatial localization should be prioritized over 
temporal resolution: when comparing how specific circuits give rise 
to behaviour across species, the more fundamental task is to establish 
correspondence in space, to ensure that the signals are coming from 
the same or homologous regions; only then can the relative timing 
of events be meaningfully interpreted. Finally, although MRI-based 
methods are among the safest imaging techniques, they are expensive 
and can be still inappropriate for some populations, such as those with 
certain medical implants or who cannot lay prone in the scanner for 
sufficient periods of time. However, these constraints exclude a much 

smaller percentage of the population than the constraints of more 
invasive techniques (for example, PET or intracranial EEG). Therefore, 
given this landscape, and despite its inherent limitations, we believe 
that fMRI is the strongest candidate for integrating across subfields 
of neuroscience.

fMRI in systems neuroscience
There is a historic divide between microscopic, neuronal-level and 
macroscopic, whole-brain studies in neuroscience20,21. At the small 
scale, precision is retained over individual elements, but how these 
microscopic details factor into the coherent whole is often overlooked. 
By contrast, at the whole-brain level, we gain an appreciation for the 
low-dimensional constraints imposed on a nervous system embedded 
within a corporeal body and constrained environment, but trade-off 
this clarity for an incognizance regarding the precise cellular-level 
composition of the signals that we track. Discovering the identity 
of the transfer functions that interconnect these different scales of 
analysis is a crucial missing piece for the ability to understand how 
the brain works.

Although there is ongoing debate regarding precisely whether pre- or 
post-synaptic activity in individual neurons13,16,22,23 or their interactions 
with astrocytes24 are responsible for the BOLD signal tracked with fMRI 
(Box 1), there remains little doubt regarding the fact that there is tre-
mendous spatial and temporal organization in BOLD signals recorded 
across the brain. For instance, tracking simple patterns of zero-lagged 
correlation between coarsely mapped spatial locations distributed 
across the brain identifies a set of robust groupings (often referred to 
as ‘large-scale networks’) that are stable across sessions, individuals 

Box 1

Major advances in functional neuroimaging
There have been a number of major advances in the fMRI field over 
the last few years, including (but not limited to):

Advances in data acquisition
In recent years, fMRI has seen substantial improvements in both 
spatial and temporal resolution. Smaller voxel sizes enabled by 
more powerful magnetic fields (7 Tesla and above) and/or pulse 
sequences have made it possible to record meaningful signal 
from distinct cortical layers and columns134,135, opening the door 
to understanding cognitive processes in terms of directional 
circuits (see ‘fMRI in cognitive neuroscience’). Although the 
temporal resolution of fMRI scans that rely on the BOLD contrast is 
fundamentally limited by the sluggishness of the blood response 
itself, there is evidence that signatures of much faster processes 
can be recovered even from what is traditionally considered a slow 
signal4. These improved acquisitions are enabling researchers to 
make new progress on old questions (for example, visual sequence 
detection136 and word-by-word responses in natural spoken 
language137), as well as progress on new questions not previously 
accessible with fMRI (such as phenomena linked to the human 
‘slow’ oscillation band at around 0.7 Hz including processes of sleep, 
memory and awareness41).

Advances in experimental paradigms
fMRI research has greatly expanded its repertoire of experimental 
paradigms on two—in some ways opposing—fronts. First, ‘resting- 
state’ fMRI, in which participants are imaged in the absence of  
any explicit task, has exploded in popularity over the past 15 years. 

The resting-state revolution both spurred the development 
of several families of techniques for finding structure in these 
high-dimensional datasets and provided ample opportunity to 
link across species and populations. Second, the field has also 
embraced rich experimental paradigms that derive their power by 
being either more naturalistic (for example, films, natural spoken 
language, interactive games and virtual reality138–140) and/or more 
clever in their constraints67,141. These new-wave paradigms often 
more closely mimic what the brain does in real-world contexts.

Advances in data analysis
The field has adopted new analytical methods to detect and 
characterize fine-grained activity patterns with much more 
precision. These include both techniques that directly model 
features of the task or paradigm such as encoding142,143 and 
decoding approaches144,145 and representational similarity 
analysis146, as well as largely model-free techniques that aim to find 
structure in patterns of brain activity in a more data-driven way, such 
as those that leverage signal coherence across different brains147,148 
and/or those aimed at discovering latent states that can then be 
related to behaviour149–151. In fact, data-driven methods applied 
to complex neuroimaging data can lead to remarkable advances 
in our textbook understanding of the organization of the nervous 
system152. Combined with the carefully crafted experimental 
paradigms described above, these techniques are enabling 
researchers to adjudicate between possible models for how the 
brain performs complex tasks and test new theories of cognition 
and behaviour.
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and different MRI scanners25,26, but also reconfigure as a function of 
task performance27, arousal28, learning29, across development30 and as a 
function of a range of disease processes31. Tremendous recent progress 
has been made in systematically characterizing these patterns, which 
have been shown to contain robust low-dimensional structure32, while 
also covarying with recordings from other neuroimaging modalities, 
such as the intrinsic time-scale in magnetoencephalography data33, 
the approximate myelin content from structural imaging data34,35 and 
the differential expression of a wide range of distinct genes based on 
postmortem studies36–38. This suggests a promising link between the 
recordings made at the whole-brain level and the microscopic elements 
that comprise the brain, but as yet there are no effective means for 
translating between these different scales.

Integrating across scales is a difficult problem for a variety of rea-
sons: recording techniques often trade-off micro-level precision for 
macro-scale coverage, and few techniques are capable of simultane-
ously resolving signals at multiple unique scales. This is problematic, as 
the scales at which microscopic-level neuroscience are conducted are 
orders of magnitude smaller than those that can currently be detected 
with even the most powerful high-field fMRI techniques. This gap is of 
course becoming ever smaller with the advent of improved technolo-
gies that map thousands of populations of neurons simultaneously in 
awake animals, typically using invasive calcium sensors39. However, an 
important issue remains: there are no currently accessible technologies 
that can map these microscale dynamics at the resolution of the whole 
brain, and especially without doing so invasively. However, although 
whole-brain calcium imaging in mammalian model organisms or any 
scale of calcium imaging in humans are not yet possible, it is possible 
to record whole-brain fMRI in humans and other mammal models. In 
addition, recent advances have made it possible to scan animals without 
the need for anaesthesia40, offering exciting opportunities to compare 
and contrast whole-brain imaging signatures of behaviour across spe-
cies. Thus, a profitable middle-ground could therefore be to use fMRI 
as a translator between scales, particularly given recent advances in 
layer-resolved fMRI17 and fast fMRI41 (Box 1).

The ability to state causal hypotheses about circuit-level function in 
the nervous system that then make testable predictions about macro-
scopic patterns recorded at the whole-brain scale in humans is crucial 
for the advancement of the field. Importantly, simultaneously tracking 
fMRI with microscopic measures of neural activity is not enough—
the notoriously difficult problems of learning the transfer functions 
between signals must also be solved14, while also taking seriously 
important differences in neural circuitry across species42,43. There are 
several recent examples of work in this space that provide hope for the 
future. By combining causal optogenetic manipulation of precise cellu-
lar populations in the brain with recordings of whole-brain BOLD signal 
in lightly anaesthetized rodents, researchers have been able to link the 
causal perturbation of neural populations to the large-scale network 
signatures that can be recorded at the whole-brain level44,45. Analo-
gous approaches that electrically perturb the brain of humans with 
implanted electrodes during fMRI recording provide similar causal 
access to the brain, albeit at a coarser spatial resolution than those 
provided by optogenetic methods46,47. Optogenetic fMRI techniques 
have also been combined with gene-expression maps to shed light onto 
how neuromodulators may regulate aspects of human behaviour via 
large-scale receptor networks48. Other approaches have combined 
BOLD with other imaging modalities, such as calcium recordings49 
or electrophysiology50,51, to determine whether the patterns inher-
ent within each technique coincide or differ. Early progress appears 
promising, although there are many idiosyncratic details inherent to 
neural circuitry, including sensitivity to arousal states52,53 and neuro-
chemical alterations across rostrocaudal hierarchies in the brain54,55, 
that remain to be effectively dealt with before the field can deliver 
upon the pressing need for a translational tool that enables mapping 
across the vastly different spatial scales required to link these differ-
ent methods.

fMRI in cognitive neuroscience
Once more robust links between the microcircuitry of the brain and the 
macroscopic measures that we record from fMRI have been created, 
that microcircuitry can be linked to the emergent capacities of nervous 
systems by taking advantage of what has been a longstanding advan-
tage of whole-brain imaging in humans: the capacity to shed light on 
the internal cognitive, emotional and motivational processes that give 
rise to human behaviour and thought. Developments in signal acquisi-
tion and novel analytic strategies (Box 1) have enabled substantial and 
meaningful changes in the role of fMRI in this process.
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Fig. 2 | Benefits and challenges associated with fMRI. Benefits include 
non-invasive access to the whole brain, with both spatial and temporal 
information as well as access to a wide range of cognitive functions in awake 
human participants. Challenges include the indirect nature of the BOLD 
response, its sluggish temporal nature, regional variations in the strength  
and nature of the BOLD signal, its susceptibility to various forms of noise  
(such as head motion and physiological artefacts), as well as the fact that 
cross-species comparisons can be challenging owing to the typical need for 
anaesthesia in animal studies. fMRI is also well suited to within-subject designs, 
but is also expensive and technically challenging (not shown).
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On the data acquisition front, by acquiring depth-dependent or 
‘layer-specific’ measurements using high-field fMRI, we can characterize 
directional circuits via the fact that top-down (feedback) and bottom-up 
(feed-forward) activity have distinct depth profiles across the cortical 
column. Critically, these layer-specific signatures of activity in humans 
can also be compared to observations using depth-dependent probes in 
animal models17,56–58, thus affording opportunities to test longstanding 
theories of predictive coding in human participants59. Whereas early 
layer-specific fMRI work sought to validate these methods by extend-
ing well-established findings from animal model systems into humans, 
more recent studies have begun to make novel discoveries that would 
be difficult or impossible to test in animal models. These studies are 
now informing theories of cognition in their own right. For example, 
theoretical studies comparing perception (actually experiencing an 
external stimulus) with mental imagery (calling a stimulus to mind or 
imagining a behaviour without performing it) suggest precise differ-
ences in the cortical circuits responsible for these two processes60; 
layer-specific fMRI studies are beginning to tease these phenomena 
apart in terms of their top-down versus bottom-up profiles61,62. Findings 
from layer-specific fMRI are also informing theories of attention63–65, the 
effects of which can markedly change both brain activity and behaviour 
for otherwise identical stimuli. For example, one study64 was able to 
dissociate multisensory interactions from top-down attention into 
two distinct depth-dependent profiles, suggesting that these are two 
(at least partially) separable mechanisms by which the brain regulates 
and prioritizes information flow.

The combination of incisive experimental paradigms with nuanced 
approaches to data analysis has also led to rapid progress in cogni-
tive neuroscience. For example, careful task designs combined with 
model-based analysis strategies have revealed that the brain uses a 
grid-like code to navigate both spatial and nonspatial (that is, con-
ceptual) relationships66,67 and to organize episodic memories68, akin 
to the grid cells that have been observed during spatial navigation 
in non-human animals. Building on longstanding work in the field of 
reinforcement learning69, recent studies have used fMRI to distinguish 
between possible models of how the brain computes subjective value70, 
to delineate mechanisms for learning from direct experience versus 
social observation71, and to dissociate the effects of errors of action 
selection versus execution on learning72. Of note, these studies depart 
somewhat from earlier model-based approaches, which fit models to 
behavioural data first to choose the winning model, then search for 
the neural correlates of the relevant cognitive operations73. Rather, in 
these cases, the models under study make similar predictions about 
ultimate behaviour, meaning that it would it be difficult or impos-
sible to adjudicate between them using behaviour alone. Instead, 
in these studies, models are fit directly to the neural data to search 
for evidence of the hypothesized latent operations at intermediate 
steps in the cognitive process. Although it is possible that the same 
conclusions could have been reached using EEG, MEG, or another 
technique, it is unlikely that they could have been reached with the 
same spatial specificity of fMRI, given that many of the structures in 
question were relatively deep (for example, striatum, thalamus and 
medial prefrontal cortex). This spatial specificity in humans is impor-
tant for links across species, and should be especially prioritized in 
the fields of reward learning and decision making, where there are 
exciting opportunities to translate similar tasks and circuits between 
humans and animal models. These examples thus underscore a criti-
cal role for fMRI in deepening our understanding of the mechanisms 
of cognition in ways that can also meaningfully interface with other 
subfields of neuroscience.

With this new wave of studies fuelled by methodological advances, 
the capacity for fMRI to help integrate cognitive neuroscience with the 
domains of systems, computational and clinical neuroscience offers 
exciting opportunities for advancement. One example of where these 
efforts are already bearing fruit is studies of the medial temporal lobe 

(particularly the hippocampus; Fig. 1b) and cross-species phenomena 
such as replay and reactivation, processes by which humans consolidate 
memories and learn new information74,75. These processes typically 
occur ‘offline’ (while individuals are not focused on a particular task, 
and often without explicit awareness) and are therefore not accessible 
to behavioural probes, and also critically involve deep brain structures 
in the medial temporal lobe, such that fMRI has been a critical tool for 
characterizing these phenomena in humans. These phenomena are 
thus a prime example of how fMRI is well-positioned to link across 
scales, which requires high spatial precision which can be achieved 
using both non-invasive fMRI (in humans or animal models) and invasive 
recordings (in animal models76 or occasionally, humans undergoing 
intracranial recordings).

To further interface with systems neuroscience, future work could 
leverage these clear links across species and scales to refine our under-
standing of the general transfer function(s) that map invasive record-
ings in animal models to fMRI in humans; these function(s) could in turn 
be applied to the measurements collected in other experiments to make 
more precise translational predictions and/or more precisely evaluate 
the extent to which cross-species findings converge or diverge, despite 
the substantial differences in recording techniques. On the computa-
tional side, a great deal is understood regarding the computational 
nature of hippocampal circuitry77,78, and these algorithmic features 
can be refined through the design of sophisticated cognitive tasks that 
would be difficult to perform in animals67,79. Finally, many clinical disor-
ders, such as Alzheimer’s disease80 and epilepsy81, depend critically on 
pathology within the medial temporal lobe, suggesting that advances 
in our mapping of these disorders using functional imaging82 will be 
reciprocally informed by links to clinical neuroscience and data from 
patient populations (Fig. 1b). Importantly, this is merely one example of 
a broader capacity inherent within functional neuroimaging to advance 
our understanding of how brain systems support cognitive functions 
in a way that meaningfully intersects with systems, computational and 
clinical neuroscience (Fig. 1c).

fMRI in computational neuroscience
Armed with functional neuroimaging access to cognitive processes, 
neuroscientists are faced with the novel challenge of how to make sense 
of the complex patterns inherent within functional neuroimaging data. 
Although the trade-off between functional localization and integration 
has long been appreciated83,84, functional neuroimaging was for many 
years primarily focussed on ‘brain mapping’—that is, developing links 
between particular regions or networks of the brain and specific mental 
functions. This approach led to major advances in our appreciation 
of brain function—for instance, in the characterization of distributed 
networks that are engaged consistently across different tasks85 and 
are predictive of cognitive capacities86. However, the approach falls 
short in explaining precisely how the different specialized regions 
work together to give rise to higher cognitive functions, such as fluid 
intelligence and problem-solving87. This is, of course, a difficult prob-
lem that requires a ‘birds-eye’ view of the system (that is, precisely 
the vantage point offered by fMRI); however it is also challenging to 
discern coherent algorithmic order from a set of relatively heterogene-
ous studies. What is needed are ways to sift through the complexity of 
whole-brain imaging to make sense of the principles that link patterns 
of brain activity to mental functions.

A promising approach to addressing this question has emerged 
through the use of artificial neural networks. Whereas previous com-
putational approaches to fMRI analysis often used relatively abstract 
models of a particular computational subcomponent of a task, artificial 
neural networks have inspired an alternative approach to mapping 
neural computations to brain activity88,89: namely, by training the con-
nections within a structured network of brain-inspired computational 
units in such a way that the network can perform tasks in an end-to-end 
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manner (that is, from stimulus to response). These models can now 
perform as well as (or better) than humans on many complex tasks90. 
Although it is clear that these network are not accurate re-creations 
of detailed biological networks—for example, the commonly used 
back-propagation training algorithm may be quite distinct from the 
learning rules used by biological neural networks88 and artificial neural 
networks fail to account for key findings from human psychology—
the key issue is that the distributed nature of the networks forces the 
system to solve the computational problem using some of the same 
kinds of degrees of freedom available to biological neural networks 
(that is, as distributed networks of units with varying strengths of 
connections between them91). To the extent that the brain solves com-
putational problems in a similar way to artificial neural networks, 
trained networks can be thought of as a type of ‘computational model 
organism’ that can be interrogated in order to identify the computa-
tional components of the model that are most predictive of signals 
recorded from biological brains, thus providing further insight into 
the function of the brain.

Perhaps most crucially, the types of tasks performed by human par-
ticipants can tap into complex, language-based cognitive capacities 
that are essentially impossible to study using non-human models. When 
the data from these human experiments is subsequently mapped to 
computational models, the models can be extended beyond the reaches 
of the behaviours that can be interrogated in animals, while retaining 
contact with the many hard-earned facts about the nervous system 
identified using the tools of systems neuroscience. That is, inspiration 
can be drawn from computational models that successfully replicate 
human behaviour to help answer the difficult ‘how’ question (the algo-
rithmic level, in the language of Marr92), while evaluating candidate 
solutions against measurements from fMRI—and then grounding those 
results with more precise measurements from systems neuroscience 
with known links to fMRI—to determine whether a given computational 
solution has a plausible neural implementation. This iterative process 
will afford the ability to refine existing cognitive ontologies93,94 using 
mechanisms and methods that are ideally suited to unpacking the 
structure of cognition.

To this end, a promising area that requires further development is 
determining precisely if and how existing artificial neural network archi-
tectures map onto the functions of the human brain. For instance, pio-
neering work showed that hierarchical convolutional neural networks, 
which combine many layers and filters to mimic dimensionality collapse 
and expansion95, provide a robust means for modelling key features 
of the mammalian visual system96,97. Precisely how these models map 
onto the complexity of the visual system remains an open question98; 
however, the open release of high-quality datasets designed for just this 
purpose will no doubt accelerate our progress in this sphere99. Recent 
work has also demonstrated similar isomorphisms between human 
brain activity related to language understanding (as measured using 
invasive electrophysiology) and the autoregressive neural network 
(‘transformer’) architectures that have become highly successful at 
many linguistic tasks100.

This approach holds great promise for mapping more abstract, cogni-
tive functions using the same tools—for example, by training recurrent 
neural networks to perform simulacra of cognitive tasks101,102, after 
which time the function of the networks can be interrogated using the 
same methods that used to analyse functional neuroimaging data103. By 
comparing signatures of neural networks performing cognitive tasks 
with fMRI patterns from human participants, the similarities and dif-
ferences in the computational solutions to cognitive challenges can be 
identified. Conversely, one can also use fMRI to inform the generation 
of new task-optimized neural network models104. Yet another promising 
approach has used artificial neural networks to assess the degree to 
which stimuli are actually diagnostic with respect to specific theoretical 
debates105 (in this case regarding the role of perirhinal cortex in memory 
versus perception), leading to resolution of apparent inconsistencies 

between human and macaque lesion results106. In short, there are of 
course crucial ways in which human brains differ from artificial neural 
networks88,107–109, yet the similarities and the differences between the 
two provide a number of avenues to potentially inform our understand-
ing of how the brain gives rise to cognition.

fMRI in clinical neuroscience
At the advent of fMRI, many believed that its ultimate promise would 
be to develop tools for clinical and other real-world settings. Cur-
rently, fMRI is used for pre-surgical mapping to ensure that key brain 
regions are not damaged during resections110, and more recently, to 
guide targeted placement of electrodes for deep brain stimulation111 
as well as non-invasive stimulation techniques such as transcranial 
magnetic stimulation112. However, these applications remain relatively 
niche, and many agree that the full promise of fMRI for diagnosing 
and/or treating psychiatric and neurological illnesses has not been 
borne out113. One major challenge that has prevented fMRI from mak-
ing meaningful clinical inroads is that while nearly all the discoveries 
discussed above were based on aggregating data from multiple indi-
viduals, to develop tools with real-world value, we need to identify 
biomarkers for neurological or psychiatric illnesses that are sensitive 
and specific at the individual ‘n of 1’ level, which is a fundamentally 
difficult statistical challenge.

The dream of fMRI-based tools that are suitable for widespread, 
routine clinical use may be far from reality, as proposed imaging-based 
biomarkers have turned out to be unreliable114 or too weak to support 
robust inference at the individual level115, perhaps because they have 
been built on insufficient data116. This is not to say that fMRI in its current 
state cannot make meaningful contributions to clinical neuroscience; 
rather, we suggest that a renewed focus on how basic scientific discov-
eries occurring in systems, cognitive and computational neuroscience 
can inform clinical neuroscience, and vice versa.

One challenge for n of 1 biomarkers is that behaviour and brain func-
tion are marked by considerable variability both within and across 
individuals. Ultimately, then, understanding links between brain, 
behaviour, and clinical status will require mapping of the full space 
of possible values for the measures extracted on a spectrum from 
health to pathology. Although behavioural work has long recognized 
within-subject fluctuations in how subjects perform a particular task 
(for example, trial-to-trial variability), fMRI can reveal the neural basis 
for why these fluctuations occur—in other words, how endogenous 
brain states influence if and how incoming sensory information is pro-
cessed28,117–119. Such neural and behavioural fluctuations across a range 
of different timescales—from seconds to years—have the potential to 
inform our understanding of symptom trajectories and responses to 
treatment120. They also highlight a fundamental problem in the logic 
of most current neuroimaging studies of mental health disorders: By 
sampling individuals at a single point in time, these studies systemati-
cally neglect the temporal variability that is known to occur in many 
such conditions. Longitudinal designs that relate within-subject brain 
changes to behavioural changes in the name of prognosis may be a more 
fruitful avenue for clinical applications of fMRI than single-timepoint 
diagnostic prediction. Similarly, while rich across-subject variability 
(that is, individual differences) is well established across many domains 
(personality, affect, cognitive and motor skills, and so on), understand-
ing the brain basis of these differences can reveal how and why differ-
ent brains perform the same task or react to the same information 
differently, and how this might relate to disease or risk of disease121–123. 
Again, even in the absence of n of 1 biomarkers, basic science regard-
ing neural variability can inform clinical practice in other ways, such 
as by suggesting novel interventions. For example, knowing which 
features or events within a complex stimulus, such as a film, trigger 
differential brain responses across individuals might suggest novel 
targets for cognitive-behavioural therapy.
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Another way in which fMRI can inform clinical neuroscience is 
by contributing to a mechanistic understanding of symptoms. One 
powerful example is hallucinations, or perceptual experiences in the 
absence of external stimulation. Hallucinations are a transdiagnos-
tic phenomenon: while auditory (often verbal) hallucinations are a 
hallmark of schizophrenia, they are also associated with several other 
conditions and sensory domains (for example, visual hallucinations 
in Parkinson’s disease). Several theories attempt to explain hallu-
cinations in terms of predictive coding and aberrant weighting of 
perceptual priors in constructing sensory experience124. Older neuro-
imaging studies were concerned with identifying loci of activity  
associated with hallucinations125 to understand the extent to which 
hallucinations resemble true sensory experiences in their functional 
neuroanatomy, whereas more recent fMRI studies are leveraging meth-
odological advances to build a more mechanistic understanding of 
when, how and why hallucinations occur. For example, layer-specific 
fMRI can provide empirical evidence to constrain predictive coding 
accounts, helping to adjudicate whether aberrant prediction errors 
result from impaired top-down or bottom-up signals126, and combin-
ing fMRI with computational models of conditioned hallucination 
tasks can shed light on the neural circuitry underlying latent cogni-
tive processes that give rise to hallucinations127. In addition to having 
the potential to advance clinical science (for example, by suggesting 
new targets for therapies), both of these directions also strengthen 
bridges between clinical and systems, cognitive and computational  
neuroscience.

While much attention is rightfully focused on how discoveries in 
basic science can inform clinical problems, there is also a richness of 
possible reciprocal contributions that fMRI can facilitate from clinical 
neuroscience back to the basic science modules of systems, cognitive 
and computational neuroscience. Psychoactive medications offer a way 
to causally manipulate microscale phenomena—for example, by target-
ing specific neurotransmitter systems—in humans in an admittedly 
blunt, yet ethically acceptable way. If it is known from animal models 
how manipulating these microscale phenomena should affect more 
macro-scale patterns of brain activity, pharmacological fMRI studies 
can be used to validate that the same principles apply in humans. With 
respect to computational neuroscience, to the extent that it is possible 
to model how mental processes work and how they are instantiated in 
the brain, it will be possible to test whether disruptions at various levels 
within those models yield data that match neural and/or behavioural 
deficits seen in disease. As an example, pharmacological agents that 
perturb dopaminergic function have been used to confirm the associa-
tion of fMRI signals in the striatum with dopaminergic reward predic-
tion errors128. This approach is a core principle of the rapidly growing 
field of computational psychiatry129.

A roadmap for the future of fMRI
This Perspective began by highlighting the relatively segregated 
nature of the current field of neuroscience (Fig. 1). We then argued 
that, despite its limitations (Fig. 2), fMRI is a tool that has a number 
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Fig. 3 | Potential paths towards a more integrative neuroscience. These  
paths include (clockwise, from top-left): using biophysical models to link 
cognition to psychology; combining precise causal perturbation of the brain 
(for example, with optogenetics) with whole-brain BOLD imaging to improve 
our understanding of the signals recorded from purely descriptive experiments; 
open science practices to ensure that results are robust, reproducible and 
generalizable; dense-sampling approaches that balance individual precision 
with robust statistical analyses to provide strong conclusions that retain 

heightened interpretability; recordings across a wide array of cognitive tasks  
to leverage a key strength of fMRI and mitigate the limitations of approaches in 
non-human animals; using circuit-level insights to populate biophysical models 
of the nervous system to refine our understanding of the neural mechanisms of 
cognitive function; improved recording techniques, such as layer-resolved fMRI 
and heightened resolution in the subcortex, to augment our appreciation of 
patterns of whole-brain coordinated activity; and understanding the links 
between different imaging modalities.
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of positive features that allow it to cut across and integrate these rela-
tively isolated sub-disciplines. Through this integration, we envision a 
future in which fMRI acts as a connector hub9, bringing the pieces of our 
field back together to rediscover communication between otherwise 
segregated subfields.

Advances on a number of fronts will accelerate this progression 
(Fig. 3). Key amongst these is a need for more precise appreciation 
of how the BOLD response aligns with detailed neuronal recordings 
at the microscopic scale, which we anticipate will emerge from multi-
modal image integration. By refining the biophysical understanding 
that enables translation between different imaging modalities, pre-
dictions created in one domain (such as the causal role that a specific 
cortical cell type has in a particular cognitive task130) and perhaps 
more complex cognitive contexts that are difficult or impossible to 
image in non-human species (such as complex social interactions131 
or highly abstract, rule-based tasks132) will be able to be tested in 
other species. We also anticipate a heightened importance of the 
neuroanatomical characterization of the cellular components of the 
human brain, specifically so as to ensure that comparisons across 
species are conducted with high precision; this aim will be greatly 
facilitated by the ongoing efforts of the BRAIN (Brain Research 
through Advancing Innovative Neurotechnologies) Initiative Cell 
Atlas Network. Combining this cellular-level detail with the causal 
techniques used in non-human model organisms133 as well as BOLD 
imaging will markedly improve our ability to interpret the measures 
that we collect non-invasively in human subjects. The complex causal 
networks identified using these approaches will further augment 

existing biophysical models that expose the mechanisms underlying 
higher-level brain functions.

Progress in the field will also be catalysed by continued advances 
in signal acquisition and paradigm design, particularly those that 
improve our ability to discern different neuroanatomically rele-
vant signals in the brain during the performance of cognitive tasks.  
By carefully considering the breadth and scope of cognitive tasks used 
in fMRI studies in both humans and in animal models, the wide range 
of our cognitive capacities will be more effectively mapped in both 
healthy and disease states. To this end, studies designed to robustly 
track individual differences in whole-brain organization will enable 
us to combine the power of statistical approaches with the precision 
afforded by idiosyncratic cognitive and affective capacities. Finally, 
from a meta-scientific perspective, in recent years the fMRI community 
has been at the forefront of practices such as data and code sharing 
and efforts to ensure replicability and generalizability that can serve 
as a model for other scientific communities (Box 2). This, in turn, can 
reinforce the integrative role of fMRI as well as help ensure overall 
scientific progress within and across subfields.

The complex, multi-scale organization of the brain does not 
lend itself to interrogation from a single vantage point. Overall, we 
maintain that the next wave of breakthroughs in neuroscience will 
be catalysed by a pluralistic approach that leverages the benefits 
of particular empirical tools to bolster the weaknesses of others, 
with fMRI serving as a key connector hub. In sum, there is a timely 
opportunity to refine our understanding of how the coordinated 
activity of the brain shapes the intrinsic processes that generate 
human behaviour and thought.

1. Wagner, T., Rushmore, J., Eden, U. & Valero-Cabre, A. Biophysical foundations underlying 
TMS: setting the stage for an effective use of neurostimulation in the cognitive 
neurosciences. Cortex 45, 1025–1034 (2009).

2. Murphy, S. C., Palmer, L. M., Nyffeler, T., Müri, R. M. & Larkum, M. E. Transcranial magnetic 
stimulation (TMS) inhibits cortical dendrites. eLife 5, e13598 (2016).

3. Fitzgerald, P. B. Targeting repetitive transcranial magnetic stimulation in depression: do 
we really know what we are stimulating and how best to do it? Brain Stimul. 14, 730–736 
(2021).

4. Lewis, L. D., Setsompop, K., Rosen, B. R. & Polimeni, J. R. Fast fMRI can detect oscillatory 
neural activity in humans. Proc. Natl Acad. Sci. USA 113, E6679–E6685 (2016).  
This study demonstrates a means for accelerating acquisition times in fMRI sequences, 
thus providing researchers access to rapid fluctuations in BOLD signals.

5. Barch, D. M. et al. Function in the human connectome: task-fMRI and individual differences  
in behavior. NeuroImage 80, 169–189 (2013).

6. Markiewicz, C. J. et al. The OpenNeuro resource for sharing of neuroscience data. eLife 
10, e71774 (2021).

7. Zuo, X.-N. et al. An open science resource for establishing reliability and reproducibility in 
functional connectomics. Sci. Data 1, 140049 (2014).

8. Logothetis, N. K. et al. What we can do and what we cannot do with fMRI. Nature 453, 
869–878 (2008).

9. Guimerà, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. 
Nature 433, 895–900 (2005).

10. Bertolero, M. A., Yeo, B. T. T. & D’Esposito, M. The diverse club. Nat. Commun. 8, 1277 
(2017).

11. Shine, J. M. et al. The dynamics of functional brain networks: integrated network states 
during cognitive task performance. Neuron 92, 544–554 (2016).

12. Glover, G. H. Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am. 
22, 133–139 (2011).

13. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological 
investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

14. Logothetis, N. K. & Wandell, B. A. Interpreting the BOLD Signal. Annu. Rev. Physiol. 66, 
735–769 (2004).

15. MacVicar, B. A. & Newman, E. A. Astrocyte regulation of blood flow in the brain. Cold 
Spring Harb. Perspect. Biol. 7, a020388 (2015).

16. Kahn, I. et al. Optogenetic drive of neocortical pyramidal neurons generates fMRI signals 
that are correlated with spiking activity. Brain Res. 1511, 33–45 (2013).

17. Huber, L. et al. Layer-dependent functional connectivity methods. Prog. Neurobiol. 207, 
101835 (2020).

18. Zhang, Y. et al. Rapid detection of neurons in widefield calcium imaging datasets after 
training with synthetic data. Nat. Methods 20, 747–754 (2023).

19. Evans, M. H., Petersen, R. S. & Humphries, M. D. On the use of calcium deconvolution 
algorithms in practical contexts. Preprint at bioRxiv https://doi.org/10.1101/871137 
(2019).

20. Park, H.-J. & Friston, K. Structural and functional brain networks: from connections to 
cognition. Science 342, 1238411 (2013).

21. Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. NeuroImage 160, 73–83  
(2017).

Box 2

The metascience of fMRI
fMRI has seen its share of controversies, including the challenges 
associated with circularities in data analysis153, multiple 
comparisons problems154,155, variability of results across analysis 
pipelines156 and the stability of brain-wide associations with 
behaviour116. Rather than signalling the death knell of fMRI, this 
checkered history actually reflects a heightened degree  
of self-criticism that has led to improved research practices.  
In part as a response to the discovery of these weaknesses, the 
neuroimaging community is a remarkable example of a field that 
has effectively adopted open science157,158 and has been honestly 
self-reflective and self-corrective.

These reckonings have spurred several best practices that 
should be celebrated. Data sharing is now becoming standard, 
both prospectively159,160 and retrospectively6. The effectiveness 
of data sharing efforts has greatly benefited from efforts to build 
data standards, most notably the Brain Imaging Data Structure161. 
The field also benefits from a strong culture of code sharing along 
with the development of robust, standardized, validated and 
widely accessible open source analysis tools, as is evident from—
for example, the rapid adoption of the fMRIPrep pre-processing 
workflow162. Further acceleration will come from the development 
and adoption of community standards for software development 
that will enable frictionless sharing of software components 
between development teams, as is currently being developed 
by the NMIND (this Neuroimaging Method Is Not Duplicated) 
Consortium163. We are optimistic that these improved and 
still improving research practices will accelerate discovery 
for years to come, and hope that the lessons learned and 
practices adopted in fMRI can be leveraged by other scientific 
communities.

https://doi.org/10.1101/871137


Nature | Vol 623 | 9 November 2023 | 271

22. Ekstrom, A. How and when the fMRI BOLD signal relates to underlying neural activity:  
the danger in dissociation. Brain Res. Rev. 62, 233–244 (2010).

23. Howarth, C., Mishra, A. & Hall, C. N. More than just summed neuronal activity: how 
multiple cell types shape the BOLD response. Phil. Trans. R. Soc. B 376, 20190630 
(2021).

24. Takata, N. et al. Optogenetic astrocyte activation evokes BOLD fMRI response with 
oxygen consumption without neuronal activity modulation. Glia 66, 2013–2023  
(2018).

25. Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. 
Natl Acad. Sci. USA 103, 13848–13853 (2006).

26. Smith, S. M. et al. Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 17, 
666–682 (2013).

27. Krienen, F. M., Yeo, B. T. T. & Buckner, R. L. Reconfigurable task-dependent functional 
coupling modes cluster around a core functional architecture. Phil. Trans. R. Soc. B 369, 
20130526 (2014).

28. Chang, C. et al. Tracking brain arousal fluctuations with fMRI. Proc. Natl Acad. Sci. USA 
113, 4518–4523 (2016).  
In this paradigm-shifting study, the authors tracked covariance between BOLD signals 
and a range of physiological measures, highlighting the close inter-relationships 
between these markers.

29. Bassett, D. S., Yang, M., Wymbs, N. F. & Grafton, S. T. Learning-induced autonomy of 
sensorimotor systems. Nat. Neurosci. 18, 744–751 (2015).

30. Uddin, L. Q. Typical and atypical development of functional human brain networks: 
insights from resting-state fMRI. Front. Syst. Neurosci. 4, 21 (2010).

31. Jack, C. R. et al. Magnetic resonance imaging in Alzheimer’s Disease Neuroimaging 
Initiative. Alzheimers Dement. 11, 740–756 (2015).

32. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of 
macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

33. Demirtaş, M. et al. Hierarchical heterogeneity across human cortex shapes large-scale 
neural dynamics. Neuron 101, 1181–1194.e13 (2019).

34. Vázquez-Rodríguez, B. et al. Gradients of structure–function tethering across neocortex. 
Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).

35. Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated in 
transmodal cortices. PLoS Biol. 17, e3000284 (2019).

36. Fulcher, B. D. & Fornito, A. A transcriptional signature of hub connectivity in the mouse 
connectome. Proc. Natl Acad. Sci. USA 113, 1435–1440 (2016).

37. Vértes, P. E. et al. Gene transcription profiles associated with inter-modular hubs and 
connection distance in human functional magnetic resonance imaging networks. Phil. 
Trans. R. Soc. B 371, 20150362 (2016).

38. Richiardi, J. et al. Correlated gene expression supports synchronous activity in brain 
networks. Science 348, 1241–1244 (2015).

39. Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. 
Neurosci. 19, 1142–1153 (2016).

40. Ferris, C. F. Applications in awake animal magnetic resonance imaging. Front. Neurosci. 
16, 854377 (2022).

41. Polimeni, J. R. & Lewis, L. D. Imaging faster neural dynamics with fast fMRI: a need  
for updated models of the hemodynamic response. Prog. Neurobiol. 207, 102174 
(2021).

42. Gutierrez-Barragan, D. et al. Unique spatiotemporal fMRI dynamics in the awake mouse 
brain. Curr. Biol. 32, 631–644.e6 (2022).

43. Zerbi, V., Grandjean, J., Rudin, M. & Wenderoth, N. Mapping the mouse brain with rs-fMRI: 
An optimized pipeline for functional network identification. NeuroImage 123, 11–21 
(2015).

44. Zerbi, V. et al. Rapid reconfiguration of the functional connectome after chemogenetic 
locus coeruleus activation. Neuron 103, 702–718.e5 (2019).  
This study combined whole-brain BOLD signal detection with triggering of activity in 
the locus coeruleus of mice, demonstrating macroscopic network reconfigurations 
similar to those identified in humans during cognitive task performance, conceptually 
bridging the microscopic and macroscopic scales of analysis.

45. Lee, J. H. et al. Global and local fMRI signals driven by neurons defined optogenetically 
by type and wiring. Nature 465, 788–792 (2010).  
This landmark paper showed that combined optogenetic control of both the cerebral 
cortex and thalamus in the mouse brain elicits positive BOLD signals.

46. Oya, H. et al. Mapping effective connectivity in the human brain with concurrent 
intracranial electrical stimulation and BOLD-fMRI. J. Neurosci. Methods 277, 101–112 
(2017).

47. Thompson, W. H. et al. A data resource from concurrent intracranial stimulation and 
functional MRI of the human brain. Sci. Data 7, 258 (2020).

48. Salvan, P. et al. Serotonin regulation of behavior via large-scale neuromodulation of 
serotonin receptor networks. Nat. Neurosci. 26, 53–63 (2023).

49. Lake, E. M. R. et al. Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain 
fMRI. Nat. Methods 17, 1262–1271 (2020).  
This article presents a method for concurrent widefield optical imaging and fMRI, 
enabling cell-type-specific investigations of how different neural populations 
contribute to the fMRI signal as well as more precise translation between mouse 
models and human studies.

50. Valdes-Sosa, P. A. et al. Model driven EEG/fMRI fusion of brain oscillations. Hum. Brain 
Mapp. 30, 2701–2721 (2009).

51. Mele, G. et al. Simultaneous EEG-fMRI for functional neurological assessment. Front. 
Neurol. 10, 848 (2019).

52. Destexhe, A., Rudolph, M. & Paré, D. The high-conductance state of neocortical neurons 
in vivo. Nat. Rev. Neurosci. 4, 739–751 (2003).

53. Brown, E. N., Purdon, P. L. & Van Dort, C. J. General anesthesia and altered states of 
arousal: a systems neuroscience analysis. Annu. Rev. Neurosci. 34, 601–628 (2011).

54. García-Cabezas, M. Á., Zikopoulos, B. & Barbas, H. The Structural Model: a theory linking 
connections, plasticity, pathology, development and evolution of the cerebral cortex. 
Brain Struct. Funct. 72, 429 (2019).

55. Hansen, J. Y. et al. Mapping neurotransmitter systems to the structural and functional 
organization of the human neocortex. Nat. Neurosci. 25, 1569–1581 (2022).  
This study collated data from multiple different neuroimaging modalities to track  
the spatial relationships between different classes of neuromodulatory receptors, 
thus providing a benchmark for future studies to orient their results to a broader 
neuroanatomical framework.

56. Weiler, N., Wood, L., Yu, J., Solla, S. A. & Shepherd, G. M. G. Top-down laminar 
organization of the excitatory network in motor cortex. Nat. Neurosci. 11, 360–366 
(2008).

57. Finn, E. S., Huber, L., Jangraw, D. C., Molfese, P. J. & Bandettini, P. A. Layer-dependent 
activity in human prefrontal cortex during working memory. Nat. Neurosci. 22, 1687–1695 
(2019).  
This article represents the first application of layer-specific fMRI to human 
association cortex, demonstrating that the technique can go beyond primary  
sensory cortex to reveal cortical-depth-dependent processes during a higher-order 
cognitive task.

58. Bastos, A. M., Loonis, R., Kornblith, S., Lundqvist, M. & Miller, E. K. Laminar recordings in 
frontal cortex suggest distinct layers for maintenance and control of working memory. 
Proc. Natl Acad. Sci. USA 115, 1117–1122 (2018).

59. Stephan, K. E. et al. Laminar fMRI and computational theories of brain function. NeuroImage 
197, 699–706 (2019).

60. Kosslyn, S. M., Ganis, G. & Thompson, W. L. Neural foundations of imagery. Nat. Rev. 
Neurosci. 2, 635–642 (2001).

61. Iamshchinina, P. et al. Perceived and mentally rotated contents are differentially represented 
in cortical depth of V1. Commun. Biol. 4, 1069 (2021).

62. Persichetti, A. S., Avery, J. A., Huber, L., Merriam, E. P. & Martin, A. Layer-specific contributions  
to imagined and executed hand movements in human primary motor cortex. Curr. Biol. 30, 
1721–1725.e3 (2020).

63. Klein, B. P. et al. Cortical depth dependent population receptive field attraction by spatial 
attention in human V1. NeuroImage 176, 301–312 (2018).

64. Gau, R., Bazin, P.-L., Trampel, R., Turner, R. & Noppeney, U. Resolving multisensory  
and attentional influences across cortical depth in sensory cortices. eLife 9, e46856 
(2020).

65. Liu, C. et al. Layer-dependent multiplicative effects of spatial attention on contrast 
responses in human early visual cortex. Prog. Neurobiol. 207, 101897 (2021).

66. Doeller, C. F., Barry, C. & Burgess, N. Evidence for grid cells in a human memory network. 
Nature 463, 657–661 (2010).

67. Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. Organizing conceptual knowledge 
in humans with a gridlike code. Science 352, 1464–1468 (2016).  
This article uses model-based fMRI to show that the grid-like organization used by  
the brain to represent physical space also extends to conceptual knowledge,  
and is present in the entorhinal cortex, prefrontal cortex and several other brain 
regions.

68. Deuker, L., Bellmund, J. L., Navarro Schröder, T. & Doeller, C. F. An event map of memory 
space in the hippocampus. eLife 5, e16534 (2016).

69. Gläscher, J. P. & O’Doherty, J. P. Model‐based approaches to neuroimaging: combining 
reinforcement learning theory with fMRI data. WIREs Cogn. Sci. 1, 501–510 (2010).

70. Williams, T. B. et al. Testing models at the neural level reveals how the brain computes 
subjective value. Proc. Natl Acad. Sci. USA 118, e2106237118 (2021).

71. Zhang, L. & Gläscher, J. A brain network supporting social influences in human decision- 
making. Sci. Adv. 6, eabb4159 (2020).

72. McDougle, S. D. et al. Neural signatures of prediction errors in a decision-making task are 
modulated by action execution failures. Curr. Biol. 29, 1606–1613.e5 (2019).

73. Lee, S. W., Shimojo, S. & O’Doherty, J. P. Neural computations underlying arbitration 
between model-based and model-free learning. Neuron 81, 687–699 (2014).

74. Schuck, N. W. & Niv, Y. Sequential replay of nonspatial task states in the human hippocampus. 
Science 364, eaaw5181 (2019).

75. Kurth-Nelson, Z., Economides, M., Dolan, R. J. & Dayan, P. Fast sequences of non-spatial 
state representations in humans. Neuron 91, 194–204 (2016).

76. Abe, Y. et al. Opto-fMRI analysis for exploring the neuronal connectivity of the hippocampal  
formation in rats. Neurosci. Res. 74, 248–255 (2012).

77. Basu, J. & Siegelbaum, S. A. The corticohippocampal circuit, synaptic plasticity, and 
memory. Cold Spring Harb. Perspect. Biol. 7, a021733 (2015).

78. Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M. & Norman, K. A. Complementary 
learning systems within the hippocampus: a neural network modelling approach to 
reconciling episodic memory with statistical learning. Phil. Trans. R. Soc. B 372, 
20160049 (2017).

79. Chanales, A. J. H., Oza, A., Favila, S. E. & Kuhl, B. A. Overlap among spatial memories 
triggers repulsion of hippocampal representations. Curr. Biol. 27, 2307–2317.e5 (2017).

80. Double, K. L. et al. Topography of brain atrophy during normal aging and Alzheimer’s 
disease. Neurobiol. Aging 17, 513–521 (1996).

81. Engel, J. Mesial temporal lobe epilepsy: what have we learned? Neuroscientist 7, 340–352 
(2001).

82. Dennis, E. L. & Thompson, P. M. Functional brain connectivity Using fMRI in aging and 
Alzheimer’s disease. Neuropsychol. Rev. 24, 49–62 (2014).

83. Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. Functional connectivity: the 
principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13, 
5–14 (1993).

84. McIntosh, A. R. Contexts and catalysts: a resolution of the localization and integration of 
function in the brain. Neuroinformatics 2, 175–182 (2004).

85. Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation 
and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).

86. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale 
automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 
(2011).

87. Shine, J. M. & Poldrack, R. A. Principles of dynamic network reconfiguration across 
diverse brain states. NeuroImage 180, 396–405 (2017).



272 | Nature | Vol 623 | 9 November 2023

Perspective
88. Richards, B. A. et al. A deep learning framework for neuroscience. Nat. Neurosci. 22,  

1761–1770 (2019).
89. Yamins, D. L. K. & DiCarlo, J. J. Using goal-driven deep learning models to understand 

sensory cortex. Nat. Neurosci. 19, 356–365 (2016).
90. Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT-4. 

Preprint at arXiv https://doi.org/10.48550/ARXIV.2303.12712 (2023).
91. Doerig, A. et al. The neuroconnectionist research programme. Nat. Rev. Neurosci. 24, 

431–450 (2023).
92. Marr, D. Vision: A Computational Investigation into the Human Representation and 

Processing of Visual Information (MIT Press, 2010).
93. Poldrack, R. A. & Yarkoni, T. From brain maps to cognitive ontologies: informatics and the 

search for mental structure. Annu. Rev. Psychol. 67, 587–612 (2016).
94. Bolt, T., Anderson, M. L. & Uddin, L. Q. Beyond the evoked/intrinsic neural process 

dichotomy. Netw. Neurosci. https://doi.org/10.1162/netn_a_00028 (2018).
95. Lindsay, G. W. Convolutional neural networks as a model of the visual system: past, 

present, and future. J. Cogn. Neurosci. 33, 2017–2031 (2021).
96. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural responses 

in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014).
97. Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision 

and brain information processing. Annu. Rev. Vis. Sci. 1, 417–446 (2015).
98. Bowers, J. S. et al. Deep problems with neural network models of human vision. Behav. 

Brain Sci. https://doi.org/10.1017/S0140525X22002813 (2022).
99. Allen, E. J. et al. A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial 

intelligence. Nat. Neurosci. 25, 116–126 (2022).
100. Goldstein, A. et al. Shared computational principles for language processing in humans 

and deep language models. Nat. Neurosci. 25, 369–380 (2022).
101. Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang, X.-J. Task representations 

in neural networks trained to perform many cognitive tasks. Nat. Neurosci. 22, 297–306 
(2019).

102. Mastrogiuseppe, F. & Ostojic, S. Linking connectivity, dynamics, and computations in 
low-rank recurrent neural networks. Neuron 99, 609–623.e29 (2018).  
This landmark study demonstrated how the low-rank yet noisy structure of a connectome  
can directly shape the low-dimensional manifold that characterizes the emergent 
behaviour of a recurrent neural network.

103. Thomas, A. W., Ré, C. & Poldrack, R. A. Interpreting mental state decoding with deep 
learning models. Trends Cogn. Sci. 26, 972–986 (2022).

104. Ito, T., Yang, G. R., Laurent, P., Schultz, D. H. & Cole, M. W. Constructing neural network 
models from brain data reveals representational transformations linked to adaptive 
behavior. Nat. Commun. 13, 673 (2022).

105. Bonnen, T., Yamins, D. L. K. & Wagner, A. D. When the ventral visual stream is not enough: 
a deep learning account of medial temporal lobe involvement in perception. Neuron 109, 
2755–2766.e6 (2021).

106. Bonnen, T. & Eldridge, M. A. G. Inconsistencies between human and macaque lesion data 
can be resolved with a stimulus-computable model of the ventral visual stream. eLife 12, 
e84357 (2023).

107. Zador, A. M. A critique of pure learning and what artificial neural networks can learn from 
animal brains. Nat. Commun. 10, 3770 (2019).

108. Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M. Neuroscience-inspired artificial  
intelligence. Neuron 95, 245–258 (2017).

109. Hasson, U., Nastase, S. A. & Goldstein, A. Direct fit to nature: an evolutionary perspective 
on biological and artificial neural networks. Neuron 105, 416–434 (2020).

110. Silva, M. A., See, A. P., Essayed, W. I., Golby, A. J. & Tie, Y. Challenges and techniques for 
presurgical brain mapping with functional MRI. NeuroImage 17, 794–803 (2018).

111. Boutet, A. et al. Predicting optimal deep brain stimulation parameters for Parkinson’s 
disease using functional MRI and machine learning. Nat. Commun. 12, 3043 (2021).

112. Cole, E. J. et al. Stanford neuromodulation therapy (SNT): a double-blind randomized 
controlled trial. AJP 179, 132–141 (2022).

113. Abi-Dargham, A. et al. Candidate biomarkers in psychiatric disorders: state of the field. 
World Psychiatry 22, 236–262 (2023).

114. Dinga, R. et al. Evaluating the evidence for biotypes of depression: methodological 
replication and extension of. NeuroImage 22, 101796 (2019).

115. Dukart, J., Weis, S., Genon, S. & Eickhoff, S. B. Towards increasing the clinical 
applicability of machine learning biomarkers in psychiatry. Nat. Hum. Behav. 5, 431–432 
(2021).

116. Marek, S. et al. Reproducible brain-wide association studies require thousands of 
individuals. Nature 603, 654–660 (2022).  
This article calls attention to the need for very large sample sizes when performing 
mass univariate correlations between measures of structural and/or functional brain 
connectivity and trait-like behaviours across individuals.

117. Rosenberg, M. D. et al. Functional connectivity predicts changes in attention observed 
across minutes, days, and months. Proc. Natl Acad. Sci. USA 117, 3797–3807 (2020).  
This article shows that the same functional brain connections that predict overall 
sustained attention ability also predict within-subject changes in attention observed 
over several timescales as well as during pharmacological manipulation, shedding 
light on the relationship between trait- and state-level factors in a manner with 
implications for studying symptom fluctuations in clinical conditions.

118. Podvalny, E., Flounders, M. W., King, L. E., Holroyd, T. & He, B. J. A dual role of 
prestimulus spontaneous neural activity in visual object recognition. Nat. Commun. 
10, 3910 (2019).

119. Sadaghiani, S., Poline, J.-B., Kleinschmidt, A. & D’Esposito, M. Ongoing dynamics in 
large-scale functional connectivity predict perception. Proc. Natl Acad. Sci. USA 112, 
8463–8468 (2015).

120. Burciu, R. G. et al. Functional MRI of disease progression in Parkinson disease and atypical 
parkinsonian syndromes. Neurology 87, 709–717 (2016).

121. Finn, E. S., Corlett, P. R., Chen, G., Bandettini, P. A. & Constable, R. T. Trait paranoia shapes 
inter-subject synchrony in brain activity during an ambiguous social narrative. Nat. Commun. 
9, 2043 (2018).

122. Rikandi, E. et al. Precuneus functioning differentiates first-episode psychosis patients 
during the fantasy movie Alice in Wonderland. Psychol. Med. 47, 495–506 (2017).

123. Salmi, J. et al. ADHD desynchronizes brain activity during watching a distracted 
multi-talker conversation. NeuroImage 216, 116352 (2020).

124. Sterzer, P. et al. The predictive coding account of psychosis. Biol. Psychiatry 84, 634–643 
(2018).

125. Jardri, R., Pouchet, A., Pins, D. & Thomas, P. Cortical activations during auditory verbal 
hallucinations in schizophrenia: a coordinate-based meta-analysis. Am. J. Psychiatry 168, 
73–81 (2011).

126. Haarsma, J., Kok, P. & Browning, M. The promise of layer-specific neuroimaging for testing 
predictive coding theories of psychosis. Schizophr. Res. 245, 68–76 (2022).

127. Powers, A. R., Mathys, C. & Corlett, P. R. Pavlovian conditioning–induced hallucinations 
result from overweighting of perceptual priors. Science 357, 596–600 (2017).

128. Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J. & Frith, C. D. Dopamine-dependent 
prediction errors underpin reward-seeking behaviour in humans. Nature 442, 1042–1045 
(2006).

129. Huys, Q. J. M., Maia, T. V. & Frank, M. J. Computational psychiatry as a bridge from 
neuroscience to clinical applications. Nat. Neurosci. 19, 404–413 (2016).

130. Christensen, A. J., Ott, T. & Kepecs, A. Cognition and the single neuron: How cell types 
construct the dynamic computations of frontal cortex. Curr. Opin. Neurobiol. 77, 102630 
(2022).

131. Misaki, M. et al. Beyond synchrony: the capacity of fMRI hyperscanning for the study of 
human social interaction. Soc. Cogn. Affect. Neurosci. 16, 84–92 (2021).

132. Shine, J. M. et al. The low-dimensional neural architecture of cognitive complexity is 
related to activity in medial thalamic nuclei. Neuron 104, 849–855.e3 (2019).

133. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 
18, 1213–1225 (2015).

134. Yacoub, E., Harel, N. & Uğurbil, K. High-field fMRI unveils orientation columns in humans. 
Proc. Natl Acad. Sci. USA 105, 10607–10612 (2008).

135. De Martino, F. et al. Frequency preference and attention effects across cortical depths in 
the human primary auditory cortex. Proc. Natl Acad. Sci. USA 112, 16036–16041 (2015).

136. Wittkuhn, L. & Schuck, N. W. Dynamics of fMRI patterns reflect sub-second activation 
sequences and reveal replay in human visual cortex. Nat. Commun. 12, 1795 (2021).

137. Rocca, R. et al. Language beyond the language system: Dorsal visuospatial pathways 
support processing of demonstratives and spatial language during naturalistic fast fMRI. 
NeuroImage 216, 116128 (2020).

138. Sonkusare, S., Breakspear, M. & Guo, C. Naturalistic stimuli in neuroscience: critically 
acclaimed. Trends Cogn. Sci. 23, 699–714 (2019).

139. Hamilton, L. S. & Huth, A. G. The revolution will not be controlled: natural stimuli in 
speech neuroscience. Lang. Cogn. Neurosci. 35, 573–582 (2020).

140. Lenormand, D. & Piolino, P. In search of a naturalistic neuroimaging approach: exploration 
of general feasibility through the case of VR-fMRI and application in the domain of 
episodic memory. Neurosci. Biobehav. Rev. 133, 104499 (2022).

141. Tomov, M. S., Tsividis, P. A., Pouncy, T., Tenenbaum, J. B. & Gershman, S. J. The neural 
architecture of theory-based reinforcement learning. Neuron 111, 1331–1344.e8 (2023).

142. Kay, K. N., Naselaris, T., Prenger, R. J. & Gallant, J. L. Identifying natural images from 
human brain activity. Nature 452, 352–355 (2008).

143. Mitchell, T. M. et al. Predicting human brain activity associated with the meanings of 
nouns. Science 320, 1191–1195 (2008).

144. Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in 
ventral temporal cortex. Science 293, 2425–2430 (2001).

145. Polyn, S. M., Natu, V. S., Cohen, J. D. & Norman, K. A. Category-specific cortical activity 
precedes retrieval during memory search. Science 310, 1963–1966 (2005).

146. Kriegeskorte, N. Representational similarity analysis—connecting the branches of 
systems neuroscience. Front. Syst. Neurosci. https://doi.org/10.3389/neuro.06.004.2008 
(2008).

147. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject synchronization of 
cortical activity during natural vision. Science 303, 1634–1640 (2004).

148. Nastase, S. A., Gazzola, V., Hasson, U. & Keysers, C. Measuring shared responses across 
subjects using intersubject correlation. Soc. Cogn. Affect. Neurosci. 14, 667–685 (2019).

149. Song, H., Shim, W. M. & Rosenberg, M. D. Large-scale neural dynamics in a shared low- 
dimensional state space reflect cognitive and attentional dynamics. eLife 12, e85487 
(2023).

150. van der Meer, J. N., Breakspear, M., Chang, L. J., Sonkusare, S. & Cocchi, L. Movie viewing 
elicits rich and reliable brain state dynamics. Nat. Commun. 11, 5004 (2020).

151. Munn, B. R., Müller, E. J., Wainstein, G. & Shine, J. M. The ascending arousal system 
shapes neural dynamics to mediate awareness of cognitive states. Nat. Commun. 12, 
6016 (2021).

152. Gordon, E. M. et al. A somato-cognitive action network alternates with effector regions in 
motor cortex. Nature 617, 351–359 (2023).

153. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F. & Baker, C. I. Circular analysis in 
systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12, 535–540 
(2009).

154. Bennett, C., Miller, M. & Wolford, G. Neural correlates of interspecies perspective taking in 
the post-mortem Atlantic salmon: an argument for multiple comparisons correction. 
NeuroImage 47, S125 (2009).

155. Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: why fMRI inferences for spatial 
extent have inflated false-positive rates. Proc. Natl Acad. Sci. USA 113, 7900–7905 
(2016).

156. Botvinik-Nezer, R. et al. Variability in the analysis of a single neuroimaging dataset by 
many teams. Nature 582, 84–88 (2020).

157. Zuo, X.-N., Xu, T. & Milham, M. P. Harnessing reliability for neuroscience research. Nat. 
Hum. Behav. 3, 768–771 (2019).

158. Gorgolewski, K. J. & Poldrack, R. A. A practical guide for improving transparency and 
reproducibility in neuroimaging research. PLoS Biol. 14, e1002506 (2016).  
This important benchmark paper highlights goals for improving standard practice in 
neuroimaging research.

https://doi.org/10.48550/ARXIV.2303.12712
https://doi.org/10.1162/netn_a_00028
https://doi.org/10.1017/S0140525X22002813
https://doi.org/10.3389/neuro.06.004.2008


Nature | Vol 623 | 9 November 2023 | 273

159. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. NeuroImage 
80, 62–79 (2013).

160. Karcher, N. R. & Barch, D. M. The ABCD study: understanding the development of risk 
for mental and physical health outcomes. Neuropsychopharmacology 46, 131–142 
(2021).

161. Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and 
describing outputs of neuroimaging experiments. Sci. Data 3, 160044 (2016).

162. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 
16, 111–116 (2019).

163. Kiar, G. et al. Align with the NMIND consortium for better neuroimaging. Nat. Hum. Behav. 
7, 1027–1028 (2023).

Acknowledgements The authors thank D. Fair for his engagement on earlier versions of this 
manuscript and K. Nautiyal for helpful discussions.

Author contributions All authors contributed in the generation, execution and revision of the 
manuscript.

Competing interests The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Emily S. Finn,  
Russell A. Poldrack or James M. Shine.
Peer review information Nature thanks Thomas Nickl-Jockschat, Nicholas Turk-Browne, Lucina 
Uddin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© Crown 2023

http://www.nature.com/reprints

	Functional neuroimaging as a catalyst for integrated neuroscience
	Strengths and weaknesses of fMRI
	Major advances in functional neuroimaging

	fMRI in systems neuroscience
	fMRI in cognitive neuroscience
	fMRI in computational neuroscience
	fMRI in clinical neuroscience
	A roadmap for the future of fMRI
	The metascience of fMRI

	Acknowledgements
	Fig. 1 fMRI as an integrative catalyst to dissolve modular boundaries in the existing neuroscience network.
	Fig. 2 Benefits and challenges associated with fMRI.
	Fig. 3 Potential paths towards a more integrative neuroscience.




