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Integrating brainstem and cortical 
functional architectures

Justine Y. Hansen    1, Simone Cauzzo    2,3, Kavita Singh2,4, 
María Guadalupe García-Gomar2,5, James M. Shine    6, Marta Bianciardi2,7 & 
Bratislav Misic    1 

The brainstem is a fundamental component of the central nervous 
system, yet it is typically excluded from in vivo human brain mapping 
efforts, precluding a complete understanding of how the brainstem 
influences cortical function. In this study, we used high-resolution 7-Tesla 
functional magnetic resonance imaging to derive a functional connectome 
encompassing cortex and 58 brainstem nuclei spanning the midbrain, 
pons and medulla. We identified a compact set of integrative hubs in the 
brainstem with widespread connectivity with cerebral cortex. Patterns 
of connectivity between brainstem and cerebral cortex manifest as 
neurophysiological oscillatory rhythms, patterns of cognitive functional 
specialization and the unimodal–transmodal functional hierarchy. 
This persistent alignment between cortical functional topographies 
and brainstem nuclei is shaped by the spatial arrangement of multiple 
neurotransmitter receptors and transporters. We replicated all findings 
using 3-Tesla data from the same participants. Collectively, this work 
demonstrates that multiple organizational features of cortical activity can 
be traced back to the brainstem.

The brain is a network of functionally interacting neural populations. 
Studying the functional architecture of the brain in awake humans is 
possible with multiple imaging technologies, although these technolo-
gies are often biased toward the cortex where signal quality is highest1. 
As a result, key findings about functional activity in the brain—including 
the presence of functionally specialized brain regions2, networks of 
regions with synchronized neural activity3,4 and mechanisms behind 
higher-order cognitive processes5—are primarily limited to the cerebral 
cortex. An important question is therefore: what role do extracortical 
structures have in cortical function?

Perhaps the most prominent missing piece of modern in vivo 
brain network reconstruction is the brainstem. This early evolutionary 

structure is crucial for survival and consciousness and integrates sig-
nals from across the nervous system. In addition, multiple neurotrans-
mitter systems originate in brainstem nuclei and project throughout 
the cortex, shaping cortical activity6–8. In stark contrast to research 
on cortical function, knowledge about brainstem function comes 
predominantly from lesion studies or studies in model organisms, 
and these studies are often limited to specific brainstem nuclei or 
pathways9–12. Exciting recent imaging advances have improved the 
feasibility of functional imaging in the whole brainstem, including 
ultra-high-field magnetic resonance imaging (MRI) scanners and exten-
sive brainstem-specific physiological noise reduction pipelines1,13,14. 
Furthermore, recent development of brainstem atlases encompassing 
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nuclei; Fig. 1a,b; atlas available at https://www.nitrc.org/projects/
brainstemnavig)15. We validated the brainstem atlas by parcellating 
PET images of neurotransmitter receptor densities to the brainstem 
and confirmed that receptors show high density in their associated 
brainstem nuclei, such as serotonin receptors (5HT1A, 5HT1B, 5HT2A, 
5HT4 and 5HT6) and transporter (5-HTT) in the raphe nuclei, dopamine 
receptor (D2) and transporter (DAT) in the substantia nigra and ventral 
tegmental area, and noradrenergic norepinephrine transporter (NET) 
in the locus coeruleus (Supplementary Fig. 1). Next, we confirmed that 
temporal signal-to-noise ratio (tSNR) in the brainstem, although low, 
is within the cortical tSNR range (Supplementary Fig. 2a). Finally, we 
confirmed that smaller brainstem nuclei are not associated with lower 
tSNR (r = −0.45, P = 0.0004; Supplementary Fig. 2b,c).

In Fig. 1c, we show FC (Pearson’s correlation between time series) 
of the brainstem and cortex. Cortical FC shows a familiar network 
organization and is correlated with FC data from the Human Con-
nectome Project (HCP; Spearman’s r = 0.58, P ≈ 0 (ref. 17)). Interest-
ingly, we found that the brainstem is more functionally connected 
with the cortex than it is with itself (Fig. 1d; Welch’s two-sided t-test 
t = 33.9, P < 0.001). Indeed, whereas cortical FC decreases with Euclid-
ean distance18, brainstem FC is less affected by distance (r = −0.29 and 
r = −0.11, respectively; Fig. 1e). This aligns with the fact that major 
white matter tracts in the brainstem (for example, medial lemniscus, 
spinothalamic tract and corticospinal tract19) project to regions outside 
of the brainstem (including cortex, subcortex and spinal cord), which 
may result in weak FC within the brainstem and stronger FC between 
brainstem and cortex.

Brainstem–cortex FC
The horizontal and vertical stripe patterning of brainstem–cortex FC 
shown in Fig. 1 indicates that there is a dominant pattern of brainstem–
cortex connectivity. Hereafter, we refer to the pattern of connectivity 
that brainstem nuclei make with the cortex as ‘brainstem-to-cortex’ con-
nectivity and vice versa as ‘cortex-to-brainstem’ connectivity, despite 
no implication of directionality. The dominant pattern of how brain-
stem nuclei are connected with the cortex is quantified as the sum of FC 
across cortical regions (‘weighted degree’; Fig. 2a). Brainstem-to-cortex 

multiple nuclei has made it possible to augment the cortical functional 
connectome with an anatomically comprehensive representation of 
the brainstem15.

In the present study, we investigated how the brainstem’s 
functional architecture aligns with cortical function by analyzing a 
high-resolution 7-Tesla resting-state functional MRI (fMRI) dataset in 
conjunction with a whole-brainstem atlas spanning 58 nuclei across 
midbrain, pons and medulla. First, we identified hubs of brainstem–
cortex connectivity and found that electrophysiological signatures 
of neural oscillations are reflected by brainstem–cortex functional 
connectivity (FC). Next, we clustered brainstem nuclei with respect to 
how they are connected with the cortex and identified communities of 
brainstem nuclei that subserve familiar cortical functional activation 
patterns related to memory, social cognition, movement, sensation 
and emotion. Using positron emission tomography (PET)-estimated 
brain maps for 18 neurotransmitter receptors and transporters, we 
found chemoarchitectonic signatures of brainstem–cortex FC. Finally, 
we demonstrate that the cortical functional hierarchy delineating 
unimodal (lower-order) and transmodal (higher-order) brain regions 
reflects patterns of connectivity with the brainstem. Altogether, using 
simultaneous in vivo human imaging of brainstem and cortical func-
tional activity, this study extends our perspective of cortical function—
including dynamics, cognitive function and the unimodal–transmodal 
cortical functional gradient—to the brainstem, demonstrating how cor-
tical functional architecture consistently reflects brainstem influence.

Results
Resting-state fMRI time series in the cortex and brainstem were acquired 
on a 7-Tesla scanner in 20 unrelated healthy participants (29.5 ± 1.1 years 
of age, 10 males and 10 females), and replication data were acquired 
on a 3-Tesla scanner in the same individuals. Brainstem data were pro-
cessed following established brainstem-specific protocols, and all 
functional connections were defined based on specified cortical and 
brainstem seed and target regions (see Methods for details). Cortical 
regions were defined according to the 400 regions in the Schaefer 
parcellation16, and brainstem nuclei were defined according to the 58 
nuclei in the Brainstem Navigator atlas (50 bilateral and eight midline 
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Fig. 1 | Brainstem–cortex FC. a, Coronal (posterior view), saggital and axial view 
of the thresholded (35%) probabilistic template for all 58 brainstem nuclei in the 
Brainstem Navigator atlas (https://www.nitrc.org/projects/brainstemnavig/  
(ref. 15)). b, Coronal (posterior view), saggital and axial view of cortical (gray 
points, n = 400) and brainstem (green points, n = 58) parcel coordinate centroids. 
c, Left, FC matrix (458 regions × 458 regions). Right, FC matrix between 

cortex and brainstem (400 cortical regions × 58 brainstem nuclei). d, Density 
distributions of FC within brainstem (green), between brainstem and cortex 
(blue) and within cortex (pink). e, Scatter plot of FC between regions as a function 
of Euclidean distance between parcel centroids. Within-cortex two-sided 
Spearman’s r = −0.29, P ≈ 0; brainstem–cortex two-sided Spearman’s r = 0.05, 
P = 8.7 × 10−16; within-brainstem two-sided Spearman’s r = −0.11, P = 3.4 × 10−6.
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hubs—brainstem nuclei that are most functionally connected with the 
cortex—are spatially segregated, in line with the theory that hub place-
ment optimizes the tradeoff between distance and efficient informa-
tion transfer20.

Brainstem-to-cortex hubs in the midbrain include the mesence-
phalic reticular formation, periaqueductal gray and dorsal raphe13,14. 
Brainstem hubs in the pons include the pontine reticular nuclei, the lat-
erodorsal tegmental nucleus and vestibular nuclei (spanning both pons 
and medulla). Finally, remaining brainstem hubs in the medulla include 
the inferior olivary nucleus and inferior medullary reticular formation. 
We confirmed that the weighted degree pattern is not correlated with 
tSNR (Spearmanʼs r = 0.20, P = 0.14). We similarly show the weighted 
degree pattern in the cortex, which represents how strongly cortical 
regions are connected with the brainstem (cortex-to-brainstem hubs; 

Fig. 2b). This pattern follows an anterior–posterior gradient, with the 
anterior cingulate cortex being a primary hub of cortex-to-brainstem 
FC. By binning cortical regions’ weighted degree according to their 
assignment in Mesulam classes of laminar differentiation and von 
Economo classes of cytoarchitecture, we found that limbic and insular 
classes demonstrate the greatest brainstem FC, whereas unimodal 
classes demonstrate the lowest brainstem FC (Fig. 2c,d; Mesulam 
laminar classes: one-way ANOVA F = 18.5, P = 2 × 10−11; von Economo 
cytoarchitectonic classes: one-way ANOVA F = 35.6, P = 2.0 × 10−34). 
Notably, within the limbic and insular cytoarchitectonic classes, the 
anterior insula and anterior cingulate cortex demonstrate the greatest 
cortex-to-brainstem FC (Supplementary Fig. 3).

The anterior–posterior cortical gradient of brainstem FC with cor-
tex can be interpreted as a gradient of brainstem influence on cortical 
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Fig. 2 | Dominant patterns of brainstem–cortex FC. a, Brainstem-to-cortex 
weighted degree is calculated by summing a brainstem nucleusʼ FC across 
all cortical regions. Coronal (posterior view), sagittal and axial perspectives 
of brainstem nuclei are shown. Node size and color reflect weighted degree, 
and edges are plotted for the 5% strongest functional connections within the 
brainstem (see Supplementary Fig. 22 for 2.5% and 10% strongest edges). Key 
brainstem nuclei are labeled. b, Cortex-to-brainstem weighted degree was 
calculated by summing a cortical region’s FC across all brainstem nuclei. Color 
bar ranges from the 2.5th to 97.5th percentiles of the data. c, Cortex-to-brainstem 
weighted degree binned according to classes of laminar differentiation 
(groups are significantly different from one another; one-way ANOVA F = 18.5, 
P = 2.8 × 10−11)26,94. Classes: paralimbic (n = 61), heteromodal (n = 136), unimodal 
(n = 120) and idiotypic (n = 3). d, Cortex-to-brainstem weighted degree binned 
according to classes of cytoarchitecture (groups are significantly different 

from one another; one-way ANOVA F = 35.6, P = 2.0 × 10−34)95,96. Classes: insula 
(n = 16), limbic (n = 39), association network 1 (n = 155), association network 
2 (n = 77), primary/secondary sensory (n = 64), primary motor (n = 26) and 
primary sensory (n = 23). Violin plots in c and d estimate a kernel density on the 
underlying data, where the underlying data are the weighted degree of each 
cortical region in the bin. The green point indicates the median, and the vertical 
line indicates the quartiles of the distribution. e, Scatter plots are shown for the 
correlation between cortex-to-brainstem weighted degree and seven metrics of 
MEG dynamics: power spectrum distributions for six canonical frequency bands 
and the intrinsic timescale (temporal memory of a neural element; see Methods 
for details); each point is a brain region (n = 400). Cortical distributions of MEG 
measures are shown on the brain surface below each plot and are derived from 
data in the HCP17.
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neural populations. Therefore, we tested whether this gradient is 
aligned with more direct measurements of cortical dynamics—that 
is, neural oscillatory rhythms from electrophysiology. Specifically, we 
correlated magnetoencephalography (MEG)-derived spectral power 
distributions for six canonical frequency bands as well as the intrinsic 
timescale (which can be interpreted as the temporal memory of a neural 
element) from the HCP with cortex-to-brainstem weighted degree17,21. 
We found that cortex-to-brainstem weighted degree is correlated 
(r > 0.5) with all seven measures of neural oscillatory dynamics, espe-
cially alpha power (which survives a spatial autocorrelation-preserving 
null and multiple comparisons correction; r = −0.71, Pspin = 0.016; 
Fig. 2e). This demonstrates that cortical dynamics and brainstem 
input are aligned across multiple temporal scales.

Brainstem connectivity reflects cognitive ontologies
Individual cortical regions and brainstem nuclei are similarly function-
ally connected with the brainstem following the brainstem weighted 

degree pattern (Fig. 3a, left; median r = 0.97, r ∈ [0.90, 1] for cortical 
regions, r ∈ [0.71, 0.94] for brainstem nuclei; see Supplementary Fig. 4 
for regional correlation coefficients). To understand how brainstem 
nuclei are uniquely functionally connected with the cortex, we need 
to focus on connectivity patterns beyond this dominant pattern. We 
therefore regressed brainstem weighted degree from each region’s 
connectivity-with-brainstem profile (Fig. 3a). This resulted in an FC 
matrix that represents how the brainstem and cortex are connected 
with one another above and beyond their dominant pattern of connec-
tivity (Fig. 3a, middle). By correlating the regressed cortical connec-
tivity profile of pairs of brainstem nuclei, we constructed a brainstem 
region × region correlation matrix that represents how similarly any two 
brainstem nuclei are functionally connected with the cortex (Fig. 3a, 
right).

This similarity matrix was subjected to the Louvain community 
detection algorithm at multiple resolution parameters (0.1 < γ < 6.0). 
We found that the brainstem can be divided into a nested hierarchy of 
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Fig. 3 | Brainstem communities underlying cortical function. The Louvain 
community detection algorithm was applied to determine whether brainstem 
nuclei can be organized into distinct communities that make specific connectivity 
patterns with the cortex. a, Left, for all 458 nodes (400 cortical and 58 brainstem), 
we correlated (Spearmanʼs r) the node’s brainstem FC profile with the weighted 
degree pattern shown in the inset and in Fig. 2a. The density distribution of 
Spearman’s r for brainstem (green) and cortical (pink) nodes is shown separately 
as well as together (blue) (median r = 0.97). Middle, this brainstem map (weighted 
degree of brainstem-to-cortex FC) is regressed out of each cortical region’s 
brainstem FC pattern, resulting in a matrix (400 cortical regions × 58 brainstem 
nuclei) of FC residuals. Right, correlation matrix representing how similarly 
(Spearman’s r) two brainstem nuclei are functionally connected with the cortex, 
above and beyond the dominant pattern of connectivity between brainstem 
and cortex. Brainstem nuclei are ordered according to community affiliation 

(community colors shown on the right), and communities are outlined within the 
heatmap. Brackets on the right indicate how communities are joined in coarser 
community detection solutions. b, Community assignments from the Louvain 
community detection algorithm. Coronal (posterior view), sagittal and axial 
perspectives of brainstem nuclei are shown. Node size is proportional to weighted 
degree shown in Fig. 2a. See Table 1 for a list of all brainstem nuclei organized by 
community affiliation. c, Cortical weighted degree patterns were calculated as the 
sum of a cortical region’s FC with all brainstem nuclei within a specific community 
and are shown for all five communities. These maps represent how each 
brainstem community is functionally connected with the cortex. d, Each cortical 
weighted degree pattern in c was correlated with 123 cognitive and behavioral 
meta-analytic activation maps from Neurosynth22. Only the top 10% correlations 
are shown. Correlation coefficients for the full set of Neurosynth terms can be 
found in Supplementary Fig. 8.
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communities, with each community representing a group of nuclei that 
exhibit similar FC patterns with the cortex. We show a stable solution 
of five approximately equally sized communities at γ = 2.8 in the main 
text (Fig. 3b) as well as two coarser solutions of three (γ = 1.9) and four 
(γ = 2.2) communities in the supplement (Supplementary Figs. 5 and 6). 
Regions within each community are listed in Table 1, and we describe 
each community in detail below.

How are these brainstem communities connected with the cortex? 
For each brainstem community, we calculated each cortical region’s 
total FC (weighted degree; sum of FC across brainstem nuclei) with 
the brainstem nuclei within that community (Fig. 3c; for variance 
of FC across brainstem nuclei, see Supplementary Fig. 7b). Cortical 
weighted degree can be interpreted as a cortical network pattern that 
is associated with each brainstem community. Next, to determine the 
functional specialization of each cortical network, we correlated the 
cortical weighted degree patterns in Fig. 3c with 123 meta-analytic 
functional activation patterns from Neurosynth (see Methods for 
details22). We show the 12 (10%) most highly correlated Neurosynth 
keywords in Fig. 3d and show the full list of 123 correlation coefficients 
per community in Supplementary Fig. 8.

We found a community (yellow) composed of regions throughout 
the brainstem, including the inferior colliculus, vestibular nuclei and 
inferior olivary nucleus. This community is most functionally con-
nected with unimodal cortex and associated with sensory perception 
and movement. A second sensory-related community (gray) exists in 
the medulla and is composed of regions including the superior olivary 
complex, the viscero-sensory-motor complex and the raphe magnus. 
This community is most connected with ventral regions of primary 
motor and sensory cortex as well as anterior parietal regions, such as 
the angular and supramarginal gyri, regions that are associated with 
higher-order motor coordination and speech. Note that the yellow 
and gray communities are joined in the three-community solution 
(Supplementary Fig. 5). We also found a community (pink) composed 
of midbrain regions, including the ventral tegmental area, dorsal and 
caudal–rostral linear raphe nuclei and mesencephalic reticular forma-
tion. This community is most functionally connected with cingulate 
cortex and is associated with emotion regulation, affect, addiction 
and arousal. This community’s cortical weighted degree pattern is 
also most spatially and functionally similar to the dominant weighted 
degree pattern (Supplementary Fig. 9a,b).

Finally, we found two brainstem communities that are related 
to higher-order cognitive functions. The first (green) is composed of 
midbrain regions, including the substantia nigra, red nucleus, superior 
colliculus and periaqueductal gray. This community is most connected 
with medial transmodal cortical regions, including the precuneus and 
frontal pole. The second higher-order cognitive community (blue) is 
composed of regions in the midbrain and pons, including the locus 
coeruleus, the laterodorsal tegmental nucleus/central gray of the 
rhomboencephalon and the pontine reticular nuclei. Both the green 
and blue communities are functionally connected with transmodal 
cortex and are associated with memory, but each community is spe-
cialized. The green community is most connected with the frontal pole 
and is associated with autobiographical memory and social cognition; 
the blue community is connected more broadly to medial and lateral 
transmodal cortex and is associated with memory retrieval, work-
ing memory and cognitive control. Notably, the green community 
remains isolated in the three-community and four-community solu-
tions, whereas the blue and pink communities are combined (Sup-
plementary Figs. 5 and 6). The three-community solution was also 
observed using 3-Tesla data (Supplementary Fig. 10). Collectively, 
these findings demonstrate the striking alignment between cognitive 
function and brainstem function.

To explore which nuclei may be more functionally flexible, we 
calculated Spearmanʼs correlation between each brainstem nucleus’ 
(1) regressed FC with the cortex and (2) the cortical weighted degree 
pattern of that brainstem nucleus’ assigned community (Supple-
mentary Fig. 7c). Nuclei with the lowest correlations (that is, nuclei 
that are least represented by their community’s pattern of cortical 
connectivity) include the median raphe nucleus, the superior col-
liculi, the pedunculotegmental nuclei, the microcellular tegmental 
nucleus-parabigeminal nuclei, the subcoeruleus and subregions of 
the substantia nigra as well as the red nuclei. These nuclei (except 
the median raphe, which is a midline nucleus) are all bilateral nuclei 
whose homologs are assigned to different communities. This suggests 
that these nuclei are involved in both unimodal (sensory-motor) and 
transmodal (cognition) functions.

Mapping chemoarchitecture to brainstem communities
Given that the cortex receives input from multiple neuromodulatory 
brainstem nuclei, we sought to identify the relationship among 

Table 1 | Brainstem communities

Green Yellow Pink Blue Gray

Median raphe nucleus* Raphe obscurus* Dorsal raphe* Isthmic reticular formation (L) Raphe magnus*

Paramedian raphe nucleus* Raphe pallidus* Caudal–rostral linear raphe* Pontine reticular nucleus: pontis 
oralis and caudalis (LR)

Parvicellular reticular 
nucleus: alpha part (L)

Periaqueductal gray* Inferior olivary nucleus (LR) Ventral tegmental area/ 
parabrachial pigmented nucleus 
complex (LR)

Laterodorsal tegmental 
nucleus/central gray of the 
rhomboencephalon (LR)

Superior medullary 
reticular formation (LR)

Substantia nigra: pars 
reticulata (L)

Lateral parabrachial 
nucleus (LR)

Medial parabrachial nucleus (R) Microcellular tegmental nucleus/
parabigeminal nucleus (L)

Superior olivary 
complex (LR)

Substantia nigra: pars 
compacta (LR)

Inferior medullary reticular 
formation (LR)

Substantia nigra: pars reticulata (R) Medial parabrachial nucleus (L) Viscero-sensory-motor 
nuclei complex (LR)

Red nucleus: subregion 1 (LR) Parvicellular reticular 
nucleus: alpha part (R)

Mesencephalic reticular 
formation (LR)

Locus coeruleus (LR) Subcoeruleus (L)

Red nucleus: subregion 2 (R) Red nucleus: subregion 2 (L) Cuneiform (LR)

Pedunculoegmental nuclei (L) Vestibular nucleus (LR) Isthmic reticular formation (R)

Microcellular tegmental 
nucleus, parabigeminal 
nucleus (R)

Subcoeruleus (R) Pedunculotegmental nucleus (R)

Superior colliculus (LR) Inferior colliculus (LR)

Brainstem nuclei within each of the five communities are shown in Fig. 3. Asterisks indicate a midline nucleus. L/R refers to the hemisphere of bilateral nuclei.
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neurotransmitter systems, the identified brainstem communities and 
their cortical projection patterns. We used data from a recent PET atlas 
of nine neurotransmitter systems in the human brain to estimate cor-
tical distributions of 18 neurotransmitter receptors and transporters21,23. 
Specifically, for each brainstem community, we fitted a multiple linear 
regression model that predicts the community’s cortical weighted 
degree profile from receptor and transporter densities (Fig. 4, left). 
Next, we applied dominance analysis to estimate the relative contribu-
tion (‘dominance’) of each receptor and transporter to the overall fit 
(R2

adj) of the model (Fig. 4, right)24.
The NET emerges as a dominant receptor across all communities, 

peaking in the blue memory community, which includes the primary 
nucleus for norepinephrine synthesis: the locus coeruleus. The second 
higher-order cognitive brainstem community (green) is connected 
with the cortex in a manner that aligns with monoamine transporters, 
including dopaminergic DAT and serotonergic 5-HTT. Indeed, this 
community includes the dopaminergic substantia nigra and seroton-
ergic median and paramedian raphe nuclei. NET, DAT and 5-HTT also 
demonstrate high interactional dominance, defined as the change in R2 
when an independent variable is added to the submodel that includes 
all other independent variables (Supplementary Fig. 11). This suggests 
that these transporters share relatively little variance with other vari-
ables—that is, they consistently add complementary information to 
other neurotransmitter systems when predicting cortical weighted 
degree.

We found that the overall fit (R2
adj) is greatest for the sensory-related 

(yellow) and affect-related (pink) brainstem communities. In other 
words, these brainstem nuclei are functionally connected with the 
cortex in a manner that is more aligned with cortical receptor distribu-
tions than other brainstem communities (Fig. 4). The most dominant 
receptors for both these communities include the histamine receptor 
H3, opioid receptor MOR, NET and dopamine receptor D2 and, for the 
pink community, also serotonin transporter 5-HTT and acetylcholine 
transporter VAChT. These receptors span multiple neurotransmitter 
systems and are primarily metabotropic rather than ionotropic. They 
are also receptors (specifically MOR, H3 and 5-HT1A) that are most domi-
nant in predicting the cortical weighted degree pattern (Supplemen-
tary Fig. 9c). Collectively, these findings highlight the role that multiple 
transmitter systems play in modulating brainstem–cortex FC.

Brainstem nuclei delineate unimodal and transmodal cortex
Lastly, we asked: if brainstem nuclei demonstrate unique patterns of 
FC with the cortex, do cortical regions likewise demonstrate unique 
patterns of FC with the brainstem? Using the regressed functional 
connectome described above, we correlated the regressed brainstem 

connectivity profile of pairs of cortical regions to construct a cortical 
region × region correlation matrix that represents how similarly two 
cortical regions are functionally connected with the brainstem (Fig. 5a).

We used diffusion map embedding to estimate the first gradient 
of how similarly cortical regions are connected with the brainstem. 
Cortical regions with similar scores along this gradient are similarly 
connected with the brainstem; the greater the difference in gradient 
scores, the more dissimilar regions are in their brainstem connectivity 
profiles. This gradient is strongly correlated with the principal func-
tional gradient of cortico–cortical connectivity (also derived using 
diffusion map embedding; r = 0.77, Pspin = 0.0001; Fig. 5b), which is 
thought to delineate a hierarchy of cortical function from unimodal 
(for example, primary regions involved in lower-order functions) to 
transmodal (for example, association regions involved in higher-order 
functions) regions25,26. We found that this cortical unimodal–trans-
modal hierarchy also reflects brainstem FC. Interestingly, for the gra-
dient derived from cortical connectivity with the brainstem, most 
cortical regions are placed at the extremes of the gradient. Indeed, the 
most stable solution from the Louvain community detection algorithm 
is one that identifies two prominent communities (one transmodal and 
one unimodal; Supplementary Fig. 12).

Which brainstem nuclei are more functionally connected with 
unimodal (negative gradient score) and transmodal (positive gradient 
score) regions? We calculated the weighted degree of FC from nega-
tively scored and positively scored cortical regions to the brainstem 
(Fig. 5c). We found that unimodal brain regions are most connected 
with caudal brainstem nuclei in the medulla, including the inferior 
medullary reticular formation, the viscero-sensory-motor nuclei com-
plex and the raphe pallidus and obscurus. In addition to these nuclei, 
the brainstem nucleus with the greatest unimodal connectivity is the 
inferior colliculus in the midbrain. Likewise, brainstem nuclei most 
connected with transmodal regions exist in the midbrain and pons, 
including the ventral tegmental area, the locus coeruleus, the sub-
stantia nigra, the dorsal raphe and the medial parabrachial nucleus27.

Replication in the subcortex
Finally, we extended the analyses to other subcortical and diencephalic 
regions—physically located between the cortex and brainstem and 
likely mediating their relationship—as a first step toward understand-
ing how the present findings are reflected in subcortical structures 
(Supplementary Fig. 13a). Specifically, 7-Tesla functional data were also 
acquired for 14 bilateral non-neocortical FreeSurfer-derived regions 
(caudate, putamen, pallidum, nucleus accumbens, thalamus, amygdala 
and hippocampus28), eight bilateral Brainstem Navigator diencephalic 
nuclei (lateral geniculate nucleus (LGN), medial geniculate nucleus 
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(MGN) and subthalamic nuclei subregions 1 and 2 (refs. 15,29)) and the 
hypothalamus30. For simplicity, we refer to the FreeSurfer structures as 
‘subcortex’ (although the hippocampus is technically allocortex and the 
thalamus is also part of the diencephalon) and the Brainstem Navigator 
diencephalic nuclei plus hypothalamus as ‘diencephalon’. Notably, the 
FreeSurfer-derived regions are large, cytoarchitectonically defined 
brain regions and do not undergo brainstem-specific pre-processing, 
whereas the diencephalic nuclei are small nuclei defined from T1 images 
and do undergo brainstem-specific processing due to their size and 
proximity to vasculature and cerebrospinal fluid (CSF).

First, we show how strongly each subcortical region and dience-
phalic nucleus is functionally connected with the brainstem (Supple-
mentary Fig. 13b). Regions with the greatest weighted degree include 
the thalamus, the hypothalamus and the LGN. Next, we reconstructed 
the region × region correlation matrix representing how similarly 
non-neocortical regions are functionally connected with the neocor-
tex, above and beyond the dominant weighted degree pattern of con-
nectivity (Supplementary Fig. 13c). We applied Louvain community 
detection and found a stable solution of four communities, similar to 
those described in Fig. 3, with the addition of community affiliations for 
subcortical and diencephalic regions (regions within each community 
are listed in Supplementary Table 1). The amygdala, hippocampus, 
subthalamic nuclei and MGN are grouped with the median raphe nuclei, 
inferior colliculus and superior olivary complex (gray community). 
These non-neocortical regions are most functionally connected with 
primary sensory-motor cortical regions. The nucleus accumbens and 
hypothalamus are grouped with the periaqueductal gray, cuneiform 
and superior colliculus (green community). These regions are most 
functionally connected with ventromedial prefrontal cortex. The 
caudate and thalamus are grouped with the major neuromodulatory 
nuclei, including the dorsal raphe, substantia nigra and locus coeruleus 
(blue community). These regions are most functionally connected with 
transmodal cortex, including the precuneus, anterior cingulate cortex, 

angular gyrus and dorsolateral prefrontal cortex. Finally, the putamen 
and pallidum are grouped with the viscero-sensory-motor complex, 
vestibular nucleus and inferior olivary nucleus (yellow community). 
These regions are most functionally connected with ventral primary 
and secondary motor cortex.

Lastly, we applied diffusion map embedding to the region × region 
similarity matrix representing how similarly neocortical regions are 
functionally connected with non-neocortical structures31. We found 
that the first gradient still resembles the unimodal–transmodal gra-
dient (Supplementary Fig. 13d), and we found that the hippocampus, 
amygdala and MGN have greatest FC with negatively scored (unimodal) 
brain regions, whereas the caudate, putamen, thalamus and LGN have 
greatest FC with positively scored (transmodal) brain regions. Alto-
gether, the present findings remain consistent when extended to sub-
cortical regions and diencephalic nuclei.

Sensitivity and robustness analyses
We conducted three analyses to gauge the sensitivity and robustness of 
the current findings. First, we ran a split-half resampling analysis where 
we randomly split the sample of 20 individuals into two groups of 10 
(100 repetitions). We correlated the group-averaged functional connec-
tomes, brainstem-to-cortex hub profile and cortex-to-brainstem hub 
profile between the two groups to assess how much results vary given 
different samples of participants. We found that FC (0.85 < r < 0.95), 
brainstem-to-cortex hubs (0.90 < r < 1) and cortex-to-brainstem hubs 
(0.7 < r < 0.92) are all highly correlated between groups (Supplementary 
Fig. 14). Second, to ensure that results are robust against alternative 
parcellations, we repeated the analyses using a 100-region cortical 
parcellation16 and found consistent results for all analyses (Supple-
mentary Fig. 15). Third, because all participants underwent both 7-Tesla 
and 3-Tesla scanning, we reconstructed their functional connectomes 
from the 3-Tesla fMRI time series. When comparing the functional 
connectomes across these two scanning conditions, we found that 
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within-cortex FC was correlated at r = 0.40; within-brainstem FC was 
correlated at r = 0.75; and brainstem-to-cortex FC was correlated at 
r = 0.70 (Supplementary Fig. 16). Altogether, these analyses demon-
strate that our findings are generalizable across different scanners 
and processing pipelines.

Finally, we considered the variability of FC across the 20 par-
ticipants. For every pair of participants (total, 190 pairs), we corre-
lated (Spearmanʼs r) their within-cortex FC (mean r = 0.40, range 
(0.12, 0.64)), within-brainstem FC (mean r = 0.51, range (0.27, 0.69)) 
and brainstem–cortex FC (mean r = 0.45, range (0.18, 0.63)) (Sup-
plementary Fig. 17a). Consistent with previous literature, FC is sen-
sitive to individual differences32. Next, we compared participant 
brainstem-to-cortex weighted degree (mean r = 0.69, range (0.28, 
0.88)) and cortex-to-brainstem weighted degree (mean r = 0.32, range 
(−0.03, 0.6)). This shows that brainstem-to-cortex connectivity pat-
terns are more conserved across individuals than cortex-to-brainstem 
connectivity patterns. Altogether, broad patterns of FC between brain-
stem and cortex were present in all participants, but individuals are 
diverse (see Supplementary Fig. 18 for individual FC and weighted 
degree patterns and Supplementary Fig. 17b–d for standard deviation 
across participants of FC and weighted degree). Whether individual 
differences in brainstem–cortex FC are related to individual differences 
in cognition and behavior is an important question for future work.

Discussion
In the present study, we used a high-resolution 7-Tesla fMRI dataset 
in conjunction with a comprehensive brainstem atlas of 58 nuclei to 
investigate how cortical function reflects brainstem function. We identi-
fied a compact set of integrative hubs in the brainstem with strong FC 
with the cortex. We found that multiple cortical phenomena, including 
oscillatory rhythms, cognitive function and the unimodal–transmodal 
hierarchy, can be traced back to specific FC with the brainstem.

In vivo functional imaging of the human brainstem has long 
eluded the neuroimaging field due to the challenges of imaging this 
constellation of deep structures, resulting in a vacuum of knowledge 
about awake human brainstem activity33. In the last decade, substan-
tial progress has been made to acquire a robust functional signal in 
the brainstem. Extensive research on the sources of fMRI signal in 
the brainstem and the necessity of noise correction has improved the 
acquisition and interpretability of signals in deep brain structures34–36. 
In 2015, Bianciardi et al.15 began developing an in vivo neuroimaging 
template of human brainstem nuclei that facilitated the standardiza-
tion of whole-brainstem functional imaging. Later, in 2022, Singh et al.14 
and Cauzzo et al.13 reported the resting state functional connectomes 
of functionally defined arousal and motor14 and autonomic, limbic, 
pain and sensory13 brainstem nuclei to the rest of the brain. In the 
present study, we joined these connectomes into a single dataset of 
whole-brainstem to whole-cortex FC to ask: what can in vivo human 
whole-brainstem functional activity tell us about cortical function?

First, we located the regions in the brainstem that are most 
functionally connected with the cortex. Although there exists a 
rich literature of hubs in cortex37, little is known about the hubs 
in the brainstem13,14,27. We identified a set of integrative brainstem 
hubs that are located throughout the midbrain, pons and medulla. 
Brainstem-to-cortex hubs are functionally diverse, with some thought 
to be primarily involved in motor functions (for example, inferior oli-
vary nucleus (motor coordination), pontine nuclei (movement) and 
vestibular nuclei (balance)), some that are associated with specific 
neurotransmitter systems (for example, dorsal raphe (serotonin) 
and laterodorsal tegmental nucleus (acetylcholine)8) and some that 
have been linked to multiple functions (for example, mesencephalic 
and inferior medullar reticular formation and periaqueductal gray). 
Surprisingly, the locus coeruleus is not identified as a hub, despite its 
known widespread projections throughout the cortex and its role in 
information integration38.

Likewise, we demonstrate that cortical regions follow an anterior– 
posterior gradient with respect to their FC strength to the brainstem, 
with the largest cortex-to-brainstem hubs existing in anterior cingulate 
cortex. Previous studies reported greater diffusion-weighted MRI- 
derived structural connectivity from anterior cortex to brainstem39,40. 
Similarly, transcriptomic analysis of human von Economo neurons, 
whose cell bodies are restricted to Layer V of the anterior cortex, 
showed that these bipolar neurons express transcriptional factors 
associated with long-range projections to the brainstem41,42. In other 
words, this gradient of cortex–brainstem FC likely reflects the underly-
ing synaptic connectivity between brainstem and cortex. Interestingly, 
the anterior–posterior gradient of cortex-to-brainstem FC parallels an 
anterior–posterior gradient within the insula (Supplementary Fig. 3). 
This is noteworthy because the insula (although binned into a single 
cytoarchitectonic class in Fig. 2d) is functionally diverse43. We found 
that the insular regions with greatest brainstem FC are the ventral 
anterior insular cortex (a region related to visceromotor control) and 
the dorsal anterior insular cortex (related to attention)44,45. Middle 
and posterior insular regions related to sensory functions, such as 
olfaction, gustation and interoception, are less functionally connected 
with the brainstem46.

In addition, we found a close correspondence between 
cortex-to-brainstem hubs and MEG-derived alpha power. Although 
cortical rhythms have been extensively studied, subcortical and brain-
stem rhythms are difficult to measure because of electrophysiological 
signal decay across larger distances47. One theory of the functional 
role of the alpha rhythm is that alpha represents inhibitory input from 
thalamus to cortex—that is, a ‘closed thalamic gate’48 (but see ref. 49 
for an extensive discussion on different theories of alpha oscillation 
function). This is in line with our finding that greater cortex–brain-
stem synchrony occurs in cortical regions with low alpha power. We 
also found that cortex-to-brainstem weighted degree is positively 
correlated with cortical power distributions of slow frequencies (for 
example, delta and theta), which may reflect their role in cognition50. 
Altogether, our work suggests that brainstem connectivity informs 
the grammar of ongoing cortical dynamics, prompting future work 
to test the relationship between cortical and brainstem rhythms51,52.

Functional imaging has been used to demonstrate networks of 
cortical regions that co-activate both during specific tasks and at 
rest3,4. Recent studies that explored extracortical structures of the 
central nervous system demonstrated that cortical networks also 
co-activate with specific cerebellar regions31,53,54, spinal cord segments55 
and specific brainstem nuclei27,56. Rather than imposing cortically 
defined patterns of functional activation on the brainstem, we asked 
whether brainstem nuclei share similar connection patterns with the 
cortex and, if so, what are the cortical networks of brainstem connec-
tivity. We found that the brainstem can be organized into hierarchical 
communities of nuclei with similar cortical connectivity. These com-
munities establish functional links between brainstem nuclei that were 
previously unknown and can likely be observed only in living humans 
where it is possible to record neural activity simultaneously from the 
brainstem and cortex. Furthermore, each brainstem community is con-
nected with familiar cortical functional networks underlying cognition, 
memory, sensation, movement and emotion. A small number of bilat-
eral brainstem nuclei are assigned to separate communities with both 
unimodal and transmodal characteristics, potentially suggesting that 
these nuclei are functionally flexible (Table 1). Indeed, these are also 
nuclei that demonstrate lower correlations with their respective com-
munity’s cortical weighted degree patterns (Supplementary Fig. 7c). 
Collectively, these findings indicate that the brainstem has widespread 
involvement in multiple cognitive and behavioral functions27,57.

Each community is associated with multiple psychological func-
tions. A natural explanation is that this is due to their specific chemo-
architectural makeup. Namely, the brainstem is made up of multiple 
neuromodulatory systems that project throughout the cortex, tuning 
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large-scale synchronization of neuronal populations and emergent 
functions7,8. A major neuromodulatory system that projects through-
out the brain is the noradrenergic system58. We found that NET is closely 
aligned with each brainstem community’s associated cortical activation 
pattern and that this relationship is strongest in the community (blue) 
that houses the noradrenergic locus coeruleus (Fig. 3). Furthermore, 
this community is related to memory, cognitive control and retrieval, all 
integrative functions thought to be modulated by the norepinephrine 
system59. The primacy of NET across all five brainstem communities is 
perhaps counterintuitive prima facie, given that the locus coeruleus 
is not identified as a hub. However, previous work speculated that the 
locus coeruleus’ integrative properties emerge only during specific 
behavioral contexts60. This suggests that the locus coeruleus, and 
perhaps brainstem hubs in general, may be state dependent and tem-
porally variable. Therefore, the dominance of NET may suggest that its 
spatial patterning makes NET present and available to promote brain-
stem–cortex synchrony across multiple cognitive contexts. Indeed, 
NET’s presence regardless of brain state is consistent with the fact that 
NET functions to end norepinephrine action in the synapse61 and is a 
non-specific transporter involved in the re-uptake of other monoam-
ines62. In addition, noradrenergic projections from the locus coeruleus 
may specifically target cortical regions and networks depending on the 
cognitive context. The state dependency of the locus coeruleus can 
be tested in the future with brainstem-optimized fMRI experiments 
during tasks63,64. A second, non-exclusive explanation is that the NET 
tracer ([11C]MRB) suffers from decreased signal-to-noise due to a scan 
duration longer than the half-life of 11C (ref. 65). Ultimately, more work 
is necessary to disentangle the relationship among the locus coeruleus, 
norepinephrine and NET regarding brainstem–cortex FC.

Finally, we found that cortical regions are connected with the 
brainstem following a well-known and frequently studied cortical 
gradient: the sensory–association axis25,26,31,66,67. The sensory–associa-
tion axis, or unimodal–transmodal functional hierarchy, describes 
a gradient of cortical function from lower-order to higher-order 
processes. This gradient is aligned with cortical expansion across 
ontogeny and phylogeny68, becomes more polarized with develop-
ment69 and becomes less polarized with pathological progression70. 
Notably, the sensory–association axis is generally observed from and 
interpreted in light of cortical processing and cortico–cortical con-
nectivity. Here, we found that the poles of the sensory–association 
axis demonstrate distinct connectivity patterns with the brainstem. 
This may indicate that functional inputs from the brainstem anchor 
the polar extremes of the cortical hierarchy (that is, primary and 
association cortex), whereas cortico–cortical connectivity patterns 
fill in the gradual shift from lower-order to higher-order cortical func-
tions. In other words, the hierarchy of cortical function may emerge 
from connectivity patterns with the brainstem, bringing to light the 
influence that extracortical structures can have on cortico–cortical 
connectivity. How the brainstem is involved in gradient changes across 
development, healthy aging12 and pathology is an exciting question 
for future research.

Thus far, we have primarily situated our findings within the human 
neuroimaging literature. However, brainstem connectivity and func-
tion have long been studied in non-human model organisms, such as 
mouse, rat, cat and macaque. These studies typically focus on a specific 
brainstem nucleus or class of nuclei and use anterograde and retro-
grade viral tracers to map efferent and afferent neuronal projections 
ex vivo. Tract-tracing studies consistently report dense projections 
between prefrontal cortex and the brainstem71,72, consistent with 
our finding that anterior cortex is a hub of brainstem connectivity. 
Porrino and Goldman-Rakic71 reported that the majority of brain-
stem projections to anterior cortex originate in the ventral tegmental 
area, the substantia nigra, the dorsal raphe, the locus coeruleus and 
the medial parabrachial nucleus. These five nuclei are all identified 
as brainstem nuclei with high FC with transmodal cortex (Fig. 5c). 

Indeed, although the locus coeruleus makes widespread projections 
throughout the cortex, projections to prefrontal regions produce a 
greater release of norepinephrine than those to motor cortex in rats, 
further supporting the notion that the locus coeruleus is function-
ally linked with transmodal cortex73. Regarding serotonergic raphe 
nuclei, previous studies reported a dichotomy between projection 
patterns of rostral and caudal raphe nuclei, such that rostral nuclei 
(for example, dorsal raphe and median raphe) tend to project rostrally 
to the cortex, whereas caudal nuclei (for example, raphe pallidus and 
raphe obscurus) tend to project caudally into the spinal cord or to 
visceral and somatic motor nuclei in the reticular formation of the 
brainstem74,75. In particular, most serotonergic raphe neurons that 
innervate the cortex are sent from the dorsal raphe76. We observed 
the same dichotomy between rostral and caudal raphe nuclei in terms 
of connectivity to transmodal and unimodal cortex, respectively, and 
we also identified the dorsal raphe as a hub of brainstem–cortex FC. 
Altogether, ex vivo anatomical studies in non-human species support 
the present human in vivo fMRI findings.

Why should the brainstem be more anatomically and functionally 
connected with anterior cortical regions? One hypothesis is that this 
pattern of connectivity is related to the brain’s allostasis: how the brain 
efficiently maintains energy regulation in the body77,78. The cortical 
regions with the greatest brainstem connectivity are also agranu-
lar and dysgranular regions involved in both visceromotor control 
(motor control of the internal body) and interoception (sensation of 
the internal body)79—that is, the ventral anterior insula and the anterior 
cingulate cortex. Visceromotor control and interoception are crucial 
for maintaining the body’s energy expenditure (allostasis): the brain 
anticipates the body’s metabolic needs via interoception, attempts 
to meet these needs via visceromotor control and then tunes in on 
whether needs were met via interoception once more80. These cortical 
regions are also fundamental to many functional processes (that is, are 
‘domain-general’), including emotion, memory, reward and cognitive 
control81. We found that brainstem nuclei involved in visceromotor con-
trol and interoception (periaqueductal gray, parabrachial nuclei and 
viscero-sensory-motor nuclei complex) are similarly domain-general: 
rather than being clustered together in the same functional module 
(Fig. 3), these nuclei are spread across all five identified communities 
related to memory, sensory-motor functions and emotion. Further-
more, the parabrachial nuclei tend to be less well aligned with their 
assigned community’s cortical projection patterns, again suggesting 
domain-general function. This is in contrast to skeletomotor (motor 
control of skeletal muscles) and exteroceptive (sensation of the exter-
nal world) brain regions (for example, ‘unimodal’ or primary sensory 
regions), which tend to receive little brainstem input and are typically 
domain specific. Collectively, we speculate that brainstem–cortex FC 
may reflect the brainstem’s involvement in allostasis.

Although the primary focus of this work is the brainstem–cor-
tex functional relationship, an important group of structures likely 
plays a prominent role in brainstem–cortex connectivity: the sub-
cortex. We found that the thalamus is a dominant hub of brainstem 
connectivity, which supports the notion that most brainstem projec-
tions to the cortex travel through the thalamus82,83. Brainstem nuclei 
clustered with the thalamus are overwhelmingly neuromodulatory 
(Supplementary Table 1)82,84 and are functionally connected with the 
cortex in transmodal regions, suggesting a link among higher-order 
cognitive processes, the thalamus and neuromodulatory brainstem 
nuclei. In addition, we found that the link between ventromedial limbic 
regions and brainstem nuclei, such as the periaqueductal gray, may 
be mediated by the hypothalamus. Anatomical tract-tracing studies 
in the macaque demonstrated that the hypothalamus and orbito-
frontal and medial limbic regions are connected and that these con-
nections are likely involved in autonomic responses to emotional 
stimuli85. Finally, we found that brainstem nuclei related to motor 
control, such as the inferior olivary nucleus, the vestibular nuclei and 
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the viscero-sensory-motor nuclei complex, are clustered with sub-
cortical regions also heavily involved in motor control (for example, 
putamen and globus pallidus)86,87. Indeed, these brainstem nuclei and 
subcortical regions are most functionally connected with ventral and 
secondary motor cortices. Altogether, by using in vivo fMRI, we can 
observe functionally relevant relationships among specific brainstem 
nuclei, subcortical structures and cortical regions31.

In the present study, we extended our umwelt of in vivo cortical 
functional networks to the brainstem and found that multiple cortical 
phenomena are reflected by brainstem–cortex FC. This opens doors 
for many future applications of brainstem FC. For example, multiple 
pathological markers, such as α-synuclein in Parkinson’s disease, are 
thought to emerge from brainstem dysfunction before spreading 
throughout the cortex88,89. Brainstem FC patterns may generate more 
accurate models of disease propagation and aberrant dynamics, giv-
ing rise to potentially actionable brainstem targets90. Brainstem FC 
may also facilitate the development of better computational models 
of ongoing dynamics91. Although the present work extends the study 
of in vivo human cortical function to the brainstem, it is increasingly 
possible to integrate not only brainstem function but also the structure 
and function of the cerebellum, subcortex and spinal cord into a single 
wiring diagram of the complete human central nervous system39,40,92,93.

We close with some important methodological considerations. 
First, brainstem nuclei are notoriously difficult to image, given their 
deep location, proximity to vasculature and CSF, irregular shape and 
small size. This brainstem dataset underwent extensive and optimized 
physiological noise correction and validation of the defined nuclei, 
but brainstem imaging is an active area of research, and best practices 
continue to be refined. For example, warping from individual space 
to template space can induce minor overlap of brainstem nuclei bor-
ders. In addition, medial temporal and orbitofrontal areas suffer from 
some dropout and lower tSNR, and brainstem signals demonstrate 
low residual correlation with signal from the 4th ventricle. Second, 
the temporal resolution of the 7-Tesla fMRI was minimized at 2.5 s. 
This was necessary given the number of slices and spatial resolution 
required to reconstruct small brainstem nuclei. Third, only 20 healthy 
participants were included in this study. Although we replicated the 
findings using 3-Tesla scans in the same participants and performed a 
split-half resampling analysis, future work is necessary to validate our 
findings in larger datasets. Fourth, the optimal brainstem registration 
may result in suboptimal cortical registration, although we found that 
within-cortex FC was correlated with FC from an independent dataset. 
Fifth, the present report mainly considers group-averaged FC despite 
the variability in FC across individuals (Supplementary Figs. 17 and 18). 
As acquisition and processing protocols for the brainstem become 
established, datasets with more individuals will make it possible to test 
whether individual variability in brainstem FC is predictive of individual 
differences in cognition.

In summary, we mapped the functional architecture of brainstem–
cortex connectivity. We found that the functional architecture of the 
brainstem is an ever-present leitmotif of cortical function. The present 
work takes advantage of advances in modern brain imaging, extending 
the scope of inquiry to structures that were previously inaccessible 
and ultimately leading to a more complete understanding of the brain.
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Methods
fMRI data acquisition
fMRI data in the brainstem were collected, pre-processed and origi-
nally presented in ref. 13 and ref. 14. The study protocol was approved 
by the Massachusetts General Hospital institutional review board. 
No statistical methods were used to predetermine sample size. After 
providing written informed consent in accordance with the Declara-
tion of Helsinki, 20 unrelated healthy participants (age 29.5 ± 1.1 years, 
10 males and 10 females) participated in two eyes-closed resting-state 
7-Tesla and 3-Tesla MRI sessions (Magnetom and Connectom, respec-
tively; Siemens Healthineers). No participants were excluded in the 
present report, and participants were compensated $35 USD per hour 
of participation. During the 7-Tesla session, three runs of 10 min were 
acquired, whereas a single run of 9 min was acquired at 3 Tesla. Notably, 
brainstem-specific custom protocols were developed for the 7-Tesla 
MRI acquisition and processing, which we describe below, whereas 
conventional sequences were used for the 3-Tesla MRI acquisition. 
Complete details for all acquisition and processing parameters are 
detailed in full in both ref. 13 and ref. 14.

In brief, a custom-built 32-channel receive coil and volume trans-
mit coil was used at 7 Tesla, and a custom-built 64-channel receive coil 
and volume transmit coil was used at 3 Tesla. For each participant, three 
runs of 7-Tesla functional gradient-echo echo-planar images were 
acquired with the following parameters: isotropic voxel size = 1.1 mm, 
matrix size = 180 × 240, GRAPPA factor = 3, nominal echo spacing 
0.82 ms, bandwidth = 1,488 Hz/Px, number of slices = 123, slice orienta-
tion = sagittal, slice acquisition order = interleaved, echo time 
(TE) = 32 ms, repetition time (TR) = 2.5 s, flip angle = 75°, simultaneous 
multi-slice factor = 3, number of repetitions = 210, phase-encoding 
direction = anterior–posterior and acquisition time = 10 min, 7 s. 
Between the three fMRI runs, the awake state of participants was veri-
fied verbally. Foam pads were used to minimize head motion, and 
earplugs were provided. To account for physiology-related signal 
fluctuations, timing of cardiac and respiratory cycles was recorded via 
piezoelectric finger pulse sensor (ADInstruments) and piezoelectric 
respiratory bellow (UFI), respectively. To correct for geometric distor-
tion, a 2.0-mm isotropic resolution fieldmap was acquired. Finally, an 
anatomical T1-weighted multi-echo MEMPRAGE image was acquired 
for each participant, with the following parameters: isotropic voxel 
size = 1 mm, TR = 2.53 s, TEs = 1.69, 3.5, 5.3, 7.2 ms, inversion time = 1.5 s, 
flip angle = 7°, field of view = 256 × 256 × 176 mm3, bandwidth = 650 Hz/
Px, GRAPPA factor = 3, slice orientation = sagittal, slice acquisition 
order = anterior–posterior and acquisition time= 4′28 (ref. 13).

fMRI data pre-processing
Physiological noise correction was done in each resting-state fMRI run 
using a custom-built MATLAB function of RETROICOR97 adapted to 
the slice acquisition sequence. Functional images were then slice-time 
corrected, reoriented to standard orientation and co-registered to 
the MEMPRAGE image. Co-registration was implemented in AFNI 
using a two-step procedure made of an affine co-registration and a 
boundary-based (edge enhancing) nonlinear co-registration98. Quality 
of the fMRI co-registration to MNI template space was evaluated for 
each individual to ensure that brainstem nuclei as defined by the tem-
plate aligned with individual anatomy. Next, six rigid-body motion time 
series nuisance regressors, a regressor describing respiratory volume 
per unit time convolved with a respiration response function99, a regres-
sor describing heart rate convolved with a cardiac response function100 
and five regressors modeling the signal in CSF, extracted using principal 
component analysis (PCA) on a mask of the brainstem-surrounding 
ventricles (specifically, the lower part of the 3rd ventricle, cerebral 
aqueduct and 4th ventricle), were regressed from the fMRI time series. 
Therefore, by design, the time series of brainstem nuclei are not cor-
related with the signal from the surrounding ventricles101,102. See Sup-
plementary Fig. 19 for correlations between brainstem nucleus signal 

and 4th ventricle signal as well as between brainstem nucleus signal and 
PC1 of brainstem-surrounding CSF signal. Cleaned data were scaled to 
percent signal change by dividing by the temporal signal mean, mul-
tiplying by 100 and band-pass filtering between 0.01 Hz and 0.1 Hz. 
Finally, any residual temporal mean was removed, and the three runs 
were concatenated.

Brainstem nuclei segmentation
Brainstem nuclei were defined according to the Brainstem Navigator, 
a previously developed probabilistic atlas of in vivo brainstem (n = 58 
(eight midline and 50 bilateral)) and diencephalic (n = 8 (four bilateral))  
nuclei15. The segmentation of the hypothalamus (n = 1 midline region) 
was from ref. 30. Nuclei are defined in MNI152NLin6Asym 1-mm3 
space (matrix size: 182 × 218 × 182). We provide an overview of how 
the brainstem nuclei were segmented; the original descriptions can 
be found in refs. 15,29,103–106. In brief, 12 (six males and six females, 
age 28 ± 1 years) healthy participants underwent 7-Tesla MRI imag-
ing where a T2-weighted image and a diffusion-weighted image were 
acquired. The diffusion-weighted image was used to compute diffu-
sion fractional anisotropy (FA) at every voxel. The T2-weighted and FA 
images displayed high contrast for brainstem nuclei and were used to 
label the nuclei. First, in ref. 15, three raphe nuclei (median raphe, dor-
sal raphe and raphe magnus), the periaqueductal gray, the substantia 
nigra and the red nuclei were segmented. The segmentation was done 
per participant semi-automatically, by clustering either the FA or the 
T2-weighted image (depending on the nucleus). Clusters were identi-
fied as nuclei, and, in some cases, when a cluster contained multiple 
nuclei, nuclei were separated from one another manually, using prior 
knowledge about nucleus anatomy (see Fig. 2 in ref. 15 for an overview 
of this procedure). This results in a per-participant binary mask for 
each nucleus. Labels were aligned to MNI152 template space, averaged 
across individuals and converted to a probability where 100% indi-
cates that the voxel is always identified as the specific nucleus across 
the 12 individuals. For all nuclei in the Brainstem Navigator atlas, the 
semi-automatic and manual segmentations ensured that no nuclei 
overlapped; however, the group-averaged probabilistic templates 
make it possible that nuclei overlap slightly (degree of overlap depends 
on the threshold applied to the probabilistic templates).

Later, in ref. 106, the mesopontine tegmental nuclei were seg-
mented (cuneiform, pedunculotegmental nuclei, oral pontine reticular 
nuclei, paramedian raphe and caudal-linear raphe). Here, the same 
semi-automatic procedure was applied, but two additional validations 
were applied: (1) nuclei were also segmented manually by a neurosur-
geon who used the T2-weighted and FA image contrasts as well as meso-
pontine tegmental anatomical landmarks; and (2) segmented nuclei 
were compared to a postmortem histologically defined atlas107. All 
subsequent nuclei segmented in later studies were delineated manually 
using multiple experts. The final labels (per individual) were defined 
as the intersection of the segmentations provided by the independent 
experts, and the probabilistic templates were generated by averaging 
the segmentations across participants. Segmentations were validated 
against the Paxinos atlas107. Specifically, in ref. 29, the inferior and supe-
rior colliculi and superior olivary complex were segmented (as well as 
the MGN and LGN, which are part of the thalamus). Singh et al.105 defined 
the lateral and medial parabrachial nuclei, the vestibular nuclei com-
plex and the medullary viscero-sensory-motor nuclei. The lateral and 
medial parabrachial nuclei were additionally validated using histologi-
cal evaluation from a postmortem human brainstem specimen. Singh 
et al.104 segmented the mesencephalic reticular formation, isthmic 
reticular formation, microcellular tegmental nucleus, ventral tegmen-
tal area and the caudal–rostral linear raphe nucleus complex. Finally, 
García-Gomar et al.103 segmented the raphe obscurus, raphe pallidus, 
locus coeruleus, subcoeruleus, laterodorsal tegmental nucleus-central 
gray of the rhombencephalon, inferior and superior medullary reticular 
formation and the pontine reticular nucleus (oral/caudal part).

http://www.nature.com/natureneuroscience
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Functional network reconstruction
To construct a two-dimensional functional connectome for each par-
ticipant, we used the 400-region Schaefer atlas in the cortex16 and 
the 58-nucleus Brainstem Navigator atlas in the brainstem (https://
www.nitrc.org/projects/brainstemnavig/) to define seed and target 
regions15,29,103–106. In all analyses, we thresholded the probabilistic atlas 
at 35%. Note that this threshold did result in some overlapping voxels 
for bordering nuclei. Specifically, in the 8,334 voxels labeled as part 
of a brainstem nucleus, 7,922 (95%) were labeled only once, whereas 
405 (4.8%) were labeled twice, and seven (0.08%) were labeled three 
times. No voxels were labeled more than three times. Because brain-
stem nuclei vary in size (quantified as the number of voxels within each 
region), with the smallest nucleus (median raphe) at 7 mm3 and the 
largest (periaqueductal gray) at 450 mm3, we confirmed that parcel size 
does not reflect tSNR (Supplementary Fig. 2a for tSNR, Supplementary 
Fig. 2b for parcel size (nucleus volume) and Supplementary Fig. 2c for 
their correlation). tSNR was calculated as the mean of the time series 
divided by the standard deviation (before demeaning the time series 
in the pre-processing steps outlined above), averaged across partici-
pants and parcellated to the defined cortical and brainstem regions. 
Finally, FC was defined as Pearson’s correlation between time series 
for every pair of brain regions (458 total). The group-averaged con-
nectome was calculated as the mean across individual connectomes. 
Analyses were repeated using a 100-region Schaefer atlas as part of 
the robustness analysis. Analyses were also repeated after including 
an additional eight diencephalic nuclei from the Brainstem Navigator 
atlas, the hypothalamus30 and 14 FreeSurfer subcortical structures28 
(subcortical surfaces plotted using the enigmatoolbox108). The final 
FC matrix was compared with a standard 3-Tesla FC matrix from the 
HCP (326 unrelated participants, age range 22–35 years, 145 males, 
S900 release), downloaded from https://github.com/netneurolab/
hansen_many_networks (ref. 109).

In the main text, we do not threshold FC. However, because lower 
tSNR in the brainstem results in noisier and less reliable signal and, 
therefore, likely also smaller estimates of FC81, we repeated the anal-
yses using a thresholded version of the group-averaged FC matrix 
(Supplementary Fig. 20). To generate the thresholded matrix, we 
applied a Fisher transform to the individual-specific FC matrices (Pear-
son’s correlation coefficients)13. Then, we implemented a two-tailed 
one-sample t-test to obtain a group statistic. The threshold was defined 
at P < 0.0005 (Bonferroni corrected for multiple comparisons). We 
set all edges in the group-averaged FC matrix (Pearson’s correlation 
coefficients; shown in Fig. 1c) where P > 0.0005 to 0, resulting in an FC 
matrix with 53.65% remaining connections.

Although all analyses in the main text were conducted using 
group-averaged, parcellated FC (Fig. 1c), we show the standard devi-
ation and coefficient of variation (standard deviation normalized 
by mean) of FC across all 20 participants in Supplementary Fig. 17b. 
We also show standard deviation of brainstem-to-cortex weighted 
degree (mean shown in Fig. 2a) and cortex-to-brainstem weighted 
degree (mean shown in Fig. 2b) across participants in the same figure  
(Supplementary Fig. 17c,d). Lastly, we show these three properties  
(FC, brainstem weighted degree and cortical weighted degree) for 
every participant in Supplementary Fig. 18. For statistical tests that 
assume normal distribution, data distributions were assumed to be 
normal, but this was not formally tested.

Laminar and cytoarchitectonic classes
We stratified cortex-to-brainstem hubs according to Mesulam classes 
of laminar differentiation as well as von Economo cytoarchitectonic 
classes (Fig. 2c,d). The Mesulam classes of laminar differentiation 
represent four levels of laminar differentiation (idiotypic, unimodal, 
heteromodal and paralimbic) derived from ref. 110 that integrate neu-
roanatomical, electrophysiological and behavioral studies in humans 
and non-human primates. Assignments of laminar differentiation to the 

surface were done manually by Paquola et al.94 and parcellated to the 
Schaefer 400 parcellation16 Note that the Mesulam classes of laminar 
differentiation describe both anatomical arrangement as well as corti-
cal connectivity patterns. An alternative and more direct mapping of 
laminar differentiation is that proposed by Barbas et al.111 (although 
there does not currently exist a version of the Barbas classification 
for the human surface). Likewise, the von Economo cytoarchitectonic 
classes were manually assigned to cortical regions by Vértes et al.96, 
by visual comparison of von Economo and Koskinas’s parcellation 
and anatomical landmarks112 The original von Economo and Koskinas 
classification includes only five classes; ‘limbic’ (including entorhinal, 
retrosplenial, presubicular and cingulate cortices) and ‘insular’ cortices 
were added as two additional classes. Cytoarchitectonic classes were 
then projected to the surface in ref. 94 and parcellated to the Schaefer 
400 parcellation16. Brain plots of all classes are shown in Fig. 2.

MEG data acquisition and pre-processing
Six-minute resting-state eyes-open MEG time series were acquired 
from the HCP S1200 release for 33 unrelated participants (age range, 
22–35 years, 17 males)17,113. Complete MEG acquisition protocols can 
be found in the HCP S1200 Release Manual. For each participant, we 
computed the power spectrum at the vertex level across six different 
frequency bands—delta (2–4 Hz), theta (5–7 Hz), alpha (8–12 Hz), beta 
(15–29 Hz), low gamma (30–59 Hz) and high gamma (60–90 Hz)—using 
the open-source software Brainstorm114. The pre-processing was per-
formed by applying notch filters at 60, 120, 180, 240 and 300 Hz and 
was followed by a high-pass filter at 0.3 Hz to remove slow-wave and DC-
offset artifacts. Pre-processed sensor-level data were used to obtain a 
source estimation on HCP’s fsLR4k cortex surface for each participant. 
Head models were computed using overlapping spheres, and the data 
and noise covariance matrices were estimated from the resting-state 
MEG and noise recordings. Brainstorm’s linearly constrained mini-
mum variance (LCMV) beamformers method was applied to obtain the 
source activity for each participant. Welch’s method was then applied to 
estimate power spectrum density for the source-level data, using over-
lapping windows of length 4 s with 50% overlap. Average power at each 
frequency band was then calculated for each vertex (that is, source). 
Source-level power data were then parcellated into 400 and 100 corti-
cal regions for each frequency band, according to the Schaefer atlas16. 
Intrinsic timescale of the MEG signal was estimated using spectral 
parameterization with the FOOOF (fitting oscillations and one over f)  
toolbox115, via the method developed by Gao et al.116. Power spectral 
density and intrinsic timescale maps were first calculated and analyzed 
in refs. 117,118. All pre-processed brain maps were downloaded directly 
from neuromaps21.

Community detection
To identify communities of brainstem nodes that are similarly con-
nected with the cortex, we applied the Louvain community detection 
algorithm119. Because both brainstem and cortex are connected with the 
brainstem following a dominant pattern (Fig. 2a), we first regressed this 
weighted degree pattern from every node’s connectivity-to-brainstem 
profile (Fig. 3a). The residuals represent the degree to which nodes are 
connected with one another above and beyond this dominant pattern 
of connectivity. Second, we constructed a brainstem region × brain-
stem region similarity matrix by correlating the cortical connectivity 
profiles of every pair of brainstem nodes. This similarity matrix was sub-
jected to the Louvain algorithm, which maximizes positive correlations 
within communities and negative correlations between communities.

Specifically, brainstem nodes were assigned to communities in a 
manner that maximizes the quality function

Q(γ) = 1
m+

[w+
ij − γp+ij ]δ(σi,σj)

− 1
m++m−

∑
ij
[w+

ij − δp−ij ]δ(σi,σj)
(1)
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where w+
ij  is the network with only positive correlations and likewise 

for w−
ij  and negative correlations. The term p±ij = (s±i s

±
j )/(2m

±) represents  
the null model: the expected density of connections between nodes i 
and j, where s±i = ∑jw

±
ij  and m± = ∑i, j > iw

±
ij . The variable σi is the com-

munity assignment of node i, and δ(σi, σj) is the Kronecker function and 
is equal to 1 when σi = σj and 0 otherwise. The resolution parameter, γ, 
scales the relative importance of the null model, wither greater γ (γ > 1) 
making it more difficult to detect large communities. In other words, 
as γ increases, increasingly fine network partitions, and more com-
munities, are identified. We tested 60 values of γ, from γ = 0.1 to γ = 6.0, 
in increments of 0.1. At each γ, we repeated the algorithm 250 times 
and constructed a consensus partition, following the procedure recom-
mended in ref. 120.

For each γ, the similarity of the clustering solution across the 250 
partitions was calculated as the z-score of the Rand index. Consensus 
partitions are considered better quality (that is, more stable) when the 
mean of the z-scored Rand index is high and the variance is low. We show 
the mean and variance of the z-scored Rand index across all γ, as well 
as the number of communities identified, in Supplementary Fig. 21. 
We show the community solution at γ = 2.8 in the main text because it 
identifies approximately equally sized communities (Fig. 3). We also 
show solutions at γ = 2.2 and γ = 1.9 in the supplement (Supplementary 
Figs. 5 and 6).

Neurosynth
Probabilistic measures of the association between voxels and cog-
nitive processes were obtained from Neurosynth, a meta-analytic 
tool that synthesizes results from more than 14,000 published fMRI 
studies by searching for high-frequency keywords (such as ‘pain’ 
and ‘attention’) that are published alongside fMRI voxel coordinates 
(https://github.com/neurosynth/neurosynth; using the volumetric 
association test maps22). This measure of association is the prob-
ability that a given cognitive process is reported in the study if there 
is activation observed at a given voxel. Although more than 1,000 
cognitive processes are reported in Neurosynth, we focused primar-
ily on cognitive function and, therefore, limit the terms of interest 
to cognitive and behavioral terms. These terms were selected from 
the Cognitive Atlas, a public ontology of cognitive science121, which 
includes a comprehensive list of neurocognitive processes. We used 
123 terms, ranging from umbrella terms (‘attention’, ‘emotion’) to 
specific cognitive processes (‘visual attention’, ‘episodic memory’), 
behaviors (‘eating’, ‘sleep’) and emotional states (‘fear’, ‘anxiety’). The 
coordinates reported by Neurosynth were parcellated according to 
the Schaefer atlas and z-scored16. The full list of cognitive processes 
is shown in Supplementary Fig. 8.

Neurotransmitter receptors and transporters
PET-derived receptor density data were collated by Hansen et al.23 and 
downloaded from neuromaps (https://github.com/netneurolab/neu-
romaps (ref. 21)) for 18 neurotransmitter receptors and transporters 
across nine neurotransmitter systems. These include dopamine (D2 
(refs. 122–126), DAT (ref. 127)), norepinephrine (NET (refs. 128–131)), 
serotonin (5-HT1A (ref. 132), 5-HT1B (refs. 133–139), 5-HT2A (ref. 132), 5-HT4 
(ref. 132), 5-HT6 (refs. 140,141), 5-HTT (ref. 132)), acetylcholine (α4β2  
(refs. 142,143), M1 (ref. 144), VAChT (ref. 145)), glutamate (mGluR5  
(ref. 146)), GABA (GABAA (ref. 147)), histamine (H3 (ref. 148)), cannabi-
noid (CB1 (refs. 149–152)) and opioid (MOR (ref. 153)). Methodological  
details about each tracer can be found in Supplementary Table 2. Volu-
metric PET images were parcellated according to both the Schaefer 
atlas and the Brainstem Navigator atlas15,16.

Dominance analysis
Dominance analysis seeks to determine the relative contribution 
(‘dominance’) of each independent variable to the overall fit (adjusted 
R2) of the multiple linear regression model (https://github.com/

dominance-analysis/dominance-analysis (ref. 24)). This is done by fit-
ting the same regression model on every combination of input variables 
(2p − 1 submodels for a model with p input variables). Total dominance is 
defined as the average of the relative increase in R2 when adding a single 
input variable of interest to a submodel, across all 2p − 1 submodels. 
The sum of the dominance of all input variables is equal to the total 
adjusted R2 of the complete model, making total dominance an intuitive 
method that partitions the total effect size across predictors. There-
fore, unlike other methods of assessing predictor importance, such as 
methods based on regression coefficients or univariate correlations, 
dominance analysis accounts for predictor–predictor interactions 
and is interpretable.

Interactional dominance is the increase in R2 when adding an 
independent variable to the submodel that already includes all other 
independent variables. (As total dominance is defined as the average 
change in R2 across all submodels, interactional dominance is one term 
in this average.) A variable with high interactional dominance contrib-
utes more to the linear model in the presence of all other variables and 
vice versa for low interactional dominance. Therefore, interactional 
dominance indirectly reflects the shared variance between a variable 
and the other variables in the model. Total dominance and interactional 
dominance are normalized by the total fit (R2

adj) of the model, to make 
dominance fully comparable both within and across models. The nor-
malized total dominance (percent contribution) is plotted in the heat-
map in Fig. 4, and the normalized interactional dominance (percent 
contribution) is plotted in the heatmap in Supplementary Fig. 11.

Spatial null model
Spatial autocorrelation-preserving permutation tests were used to 
assess statistical significance of associations across brain regions, 
termed ‘spin tests’154–156. We created a surface-based representation of 
the parcellation on the FreeSurfer fsaverage surface using files from 
the Connectome Mapper toolkit (https://github.com/LTS5/cmp). We 
used the spherical projection of the fsaverage surface to define spatial 
coordinates for each parcel by selecting the coordinates of the vertex 
closest to the center of the mass of each parcel. These parcel coordi-
nates were then randomly rotated, and original parcels were reassigned 
the value of the closest rotated parcel according to the Hungarian 
algorithm (10,000 repetitions)157. The procedure was performed at the 
parcel resolution rather than the vertex resolution to avoid upsampling 
the data and for each hemisphere separately. To compute a P value, 
we counted the number of times the null test statistic (for example, 
Spearman’s correlation with rotated brain map) was more extreme 
than the empirical test statistic (for example, Spearman’s correlation 
with original brain map), after de-meaning. Finally, we added 1 to the 
numerator and normalized by the number of rotations plus 1 (10,001) 
such that the smallest possible P value was 0.0001. All statistical tests 
using the spin test were two-sided.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All pre-processed data used to perform the analyses are available at 
https://github.com/netneurolab/hansen_brainstemfc. MEG power 
spectral data and neurotransmitter receptor/transporter data are 
available in neuromaps (https://github.com/netneurolab/neuromaps). 
Neurosynth data are available at https://neurosynth.org/, and the Cog-
nitive Atlas is available at https://www.cognitiveatlas.org/.

Code availability
All code used to perform the analyses is available at https://github.
com/netneurolab/hansen_brainstemfc. Python version 3.8.10 was 
used for running scripts.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection MEG data was processed using the open software toolbox Brainstorm v220420. 

Neurosynth meta-analytic maps were fetched using neurosynth v0.3 

Brainstem data were previously collected and were not specifically collected for the purposes of this study. 

The Connectome Mapper toolkit release-1.2.0 was used for the spatial nulls.

Data analysis Python v3.8.10 was used for running scripts and Brainstem Navigator v0.9 was used for identifying brainstem nuclei. 

A full list of packages used can be found at https://github.com/netneurolab/hansen_brainstemfc/blob/main/environment.yml

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All pre-processed data used to perform the analyses are available at https://github.com/netneurolab/hansen_brainstemfc. MEG power spectral data and 

neurotransmitter receptor/transporter data are available in neuromaps (https://github.com/netneurolab/neuromaps). Neurosynth data is available at https://

neurosynth.org/ and the Cognitive Atlas is available at https://www.cognitiveatlas.org/.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Only group-averaged brainstem functional connectivity was analyzed. The group consists of an equal number of males and 

females. Gender was not considered in the analyses.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

Only group-averaged brainstem functional connectivity was analyzed. Data were not grouped by race, ethnicity, or other 

socially relevant groupings.

Population characteristics 20 healthy subjects volunteered for functional imaging: 10 males, 10 females, age 29.5 +/- 1.1 years.

Recruitment Subjects were not recruited for the present study but for a previous study (https://www.sciencedirect.com/science/article/

pii/S1053811922000544#sec0002). 

Ethics oversight The original study protocol (not done for the purposes of the present study but previously in 2022) was approved by the 

Massachusetts General Hospital Institutional Review Board. Informed consent was obtained by participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 20 healthy subjects (10 males and 10 females; age 29.5 ± 1.1 years) were recruited to participate in two functional MRI sessions. No 

predetermined sample size was generated. Sample size in a previous paper (Bianciardi et al 2016 Magn Reson Mater Phy) was 12 and some 

nuclei showed suboptimal connectivity. Sample size was therefore increased to 20 in Cauzzo & Singh et al 2022 NeuroImage and Singh & 

Cauzzo et al 2022 NeuroImage, and scan duration tripled, to optimize stability of connectivity across subjects. We confirm that sample size is 

sufficient by running a split-half analysis and ensuring group-average FC of two 10-subject subsets are highly correlated.

Data exclusions No data was excluded.

Replication Images were acquired at 7 Tesla and replicated at 3 Tesla. Furthermore, analyses were performed at the resolution of 400 cortical parcels 

(Schaefer-400) and replicated at the resolution of 100 cortical parcels (Schaefer-100). A split-half resampling analysis was performed to 

ensure findings are robust to sample. Finally, analyses were replicated in the subcortex.

Randomization No experimental groups exist.

Blinding No experimental groups exist and therefore blinding is not relevant to the study.

Reporting for specific materials, systems and methods



3

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes n/a

Seed stocks n/a

Authentication n/a

Plants

Magnetic resonance imaging

Experimental design

Design type resting-state

Design specifications 3 resting-state runs were acquired at 7 Tesla (acquisition time per run = 10:07 min) 

1 resting-state run was acquired at 3 Tesla (acquisition time = 9:06 min)

Behavioral performance measures No behavioural measures were acquired.

Acquisition

Imaging type(s) functional MRI

Field strength 7 Tesla and 3 Tesla

Sequence & imaging parameters At 7 Tesla: 

A custom-built 32-channel receive coil and volume transmit coil was used at 7 Tesla. For each subject, three runs of 7 

Tesla functional gradient-echo echo-planar images (EPIs) were acquired with the following parameters: isotropic voxel 

size = 1.1 mm, matrix size = 180 × 240, GRAPPA factor = 3, nominal echo-spacing = 0.82 ms, bandwidth = 1488 Hz/Px, N. 

slices = 123, slice orientation = sagittal, slice-acquisition order = interleaved, echo time (TE) = 32 ms, repetition time (TR) 

= 2.5 s, flip angle (FA) = 75°, simultaneous-multi-slice factor = 3, N. repetitions = 210, phase-encoding direction = 

anterior-posterior, acquisition-time = 10’07”. 

 

At 3 Tesla: 

To assess the connectivity reproducibility using 3 Tesla MRI, on the same subjects, we acquired one run of conventional 

functional gradient-echo EPIs (isotropic voxel size = 2.5 mm, matrix size = 215 × 215, GRAPPA factor = 2, nominal echo-

spacing = 0.5 ms, readout bandwidth = 2420 Hz/Px, N. slices = 64, slice orientation = transversal, slice-acquisition order 

= interleaved, TE = 30 ms, TR = 3.5 s, FA = 85°, N. repetitions = 150, phase-encoding direction = anterior-posterior, 

acquisition time = 9’06”) and a fieldmap (isotropic voxel size = 2.5 mm, FOV = 215 × 215, bandwidth = 300 Hz/Px, N. 

slices = 128, slice orientation = sagittal, slice-acquisition order = interleaved, TE1 = 4.92 ms, TE2 = 7.38 ms, TR = 849.0 

ms, FA = 85°, acquisition time = 2’19”, phase-encoding direction = anterior-posterior). Note that, for the purposes of 

this study, at 3 Tesla a conventional fMRI sequence was used, and the additional 3 Tesla Connectom scanner capabilities 

were not employed. A custom-built 64-channel receive coil and volume transmit coil was used at 3 Tesla 

Area of acquisition Whole brain
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Diffusion MRI Used Not used

Preprocessing

Preprocessing software The root mean square across echo times was extracted from each MEMPRAGE image, the output was then rotated to 

standard orientation (‘RPI’). Bias-field correction was applied with SPM (Frackowiak et al., 1997) tools, then we used FSL 

routines to extract the brain and crop the image (FMRIB Software Library, FSL 5.0.7, Oxford, UK). Brain parcellations were 

generated on the MEMPRAGE with Freesurfer (Destrieux et al., 2010) to obtain cortical and subcortical targets. The 

preprocessed MEMPRAGEs were then iteratively aligned and averaged to build a group-based optimal template with the use 

of the Advanced Normalization Tool (ANTs, Philadelphia, PA, United States). 

Normalization Images were aligned to the MNI-152 1mm template using ANTs through an affine transformation and a nonlinear warp.

Normalization template MNI152 1mm.

Noise and artifact removal Physiological noise correction was done in each resting state fMRI run using custom-built Matlab function of RETROICOR 

\citep{glover2000magnresonmed} adapted to the slice acquisition sequence. Functional images were then slice-time 

corrected, reoriented to standard orientation, and coregistered to the MEMPRAGE image. Coregistration was implemented 

in AFNI using a two-step procedure made of an affine coregistration and a boundary-based (edge enhancing) nonlinear 

coregistration \citep{cox1996computbiomedres}. Next, six rigid-body motion time-series nuisance regressors, a regressor 

describing respiratory volume per unit time convolved with a respiration response function \citep{birn2008neuroimage}, a 

regressor describing heart rate convolved with a cardiac response function \citep{chang2009neuroimage}, and five 

regressors modeling the signal in cerebrospinal fluid (CSF), extracted using PCA on a mask of the ventricles, were regressed 

from the fMRI time-series. Cleaned data were scaled to percent signal change by dividing by the temporal signal mean, 

multiplying by 100, and bandpass filtering between 0.01--0.1 Hz. Finally, any residual temporal mean was removed and the 

three runs were concatenated.

Volume censoring n/a

Statistical modeling & inference

Model type and settings Functional connectivity is defined as the Pearson's correlation between time-series of pairs of regions.

Effect(s) tested No effects were tested.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

Voxel-wise.

Correction n/a

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Pearson's correlation.

Graph analysis Fully connected networks were derived from the functional connectomes. Weighted degree is defined as a 

node's summed FC with all other nodes.

Multivariate modeling and predictive analysis In Figure 4 a multiple linear regression model was fit where independent variables are cortical receptor 

densities and the dependent variable is a cortical FC pattern associated with a specific brainstem module. 

Adjusted R-squared are shown. 

In Figure 5, diffusion map embedding is applied to extract a principal gradient of cortex-brainstem functional 

connectivity.


	Integrating brainstem and cortical functional architectures

	Results

	Brainstem–cortex FC

	Brainstem connectivity reflects cognitive ontologies

	Mapping chemoarchitecture to brainstem communities

	Brainstem nuclei delineate unimodal and transmodal cortex

	Replication in the subcortex

	Sensitivity and robustness analyses


	Discussion

	Online content

	Fig. 1 Brainstem–cortex FC.
	Fig. 2 Dominant patterns of brainstem–cortex FC.
	Fig. 3 Brainstem communities underlying cortical function.
	Fig. 4 Mapping chemoarchitecture to brainstem communities.
	Fig. 5 Brainstem nuclei delineate unimodal and transmodal cortical regions.
	Table 1 Brainstem communities.




